In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels a t regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65 % of octanoic acid infused into the duodenum and 54 % of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.
_~~_ _ _Seven non-anaesthetized pigs (mean body-weight 64.6 kg) were used to study the intestinal absorption and hepatic metabolism of glucose and amino acids (AA) using carbohydrate solutions (maltose dextrin; 440 g/2 I), containing 110 g of either an enzymic milk-protein hydrolysate (PEP) with a large percentage of small peptides (about 50% with less than five AA residues) and very few free AA (8%) or a mixture of free AA (AAL) with an identical pattern, infused intraduodenally. Each pig was previously fitted under anaesthesia with electromagnetic flow probes around the portal vein and the hepatic artery, and with permanent catheters in the portal vein, carotid artery, one hepatic vein and the duodenum. Each solution was infused for 1 h after a fasting period (18 h) and each pig received both solutions at 8 d intervals. The observation period lasted 8 h. For most AA (his, lys, phe, thr, arg, tyr, pro) the absorption rate after infusion of P E P was significantly higher than after that of AAL during the 1st hour, but the differences quickly disappeared. After 8 h, the only differences concerned his and tyr (PEP > AAL) and met, glu and asp (AAL > PEP). There was a large uptake of blood AA by gut-wall cells, higher after AAL infusion than after P E P infusion, particularly for branched-chain AA (BCAA). The absorption of ammonianitrogen after both infusions was equivalent to two-thirds of urea-N passing from blood to intestinal tissues and lumen. Glucose absorbed within 8 h represented only 76% (PEP) or 69% (AAL) of the infused amounts. The cumulative hepatic total AA (TAA) uptake increased from 13 to 27% of the infused amounts between the 1st and the 8th hour after P E P infusion, and from 8 to 31 YO after AAL infusion. Most essential AA were largely taken up by the liver, with the exception of met (PEP) and thr and of BCAA, which were poorly retained for both solutions; there was a high uptake of ala and gly, and a release of asp, glu, and gln. Urea-N released by the liver within 8 h was equivalent to 23-25% absorbed amino-N and to around 1 5 times ammonia-N taken up by the liver within 8 h. Glucose was highly taken up by the liver during the first hours then released, the total uptake within 8 h representing about half the absorbed amount. There was a lactate release tending to he higher after P E P than after AAL infusion and a liver pyruvate release identical for both solutions. From calculations of net noncatabolic metabolism in the liver the possible synthesis of liver proteins within 8 h may be estimated at 35 g for both solutions. The cumulative peripheral TAA uptake increased from 12 to 27 % of the infused amounts between the 1st and 8th hour after P E P and from 9 to 11 % after AAL infusion. At 8 h after the infusion the larger uptake concerned BCAA, arg, glu and asp and there was a marked release of gln, gly and ala for both solutions; the peripheral balance was zero for met (PEP) or characterized by a release of phe and thr (AAL). Thus, protein synthesis seemed only to be possible with the aid of plas...
1. Concentrations of reducing sugars, glucose, fructose and lactic acid in blood obtained from arterial and portal catheters were measured for periods of 8-24 h in twenty-three unanaesthetized pigs (mean body-weight 50 kg). From 6 to 8 d after implantation of catheters, the animals received experimental meals containing different levels (400, 800, 1200, 1600 g respectively) of different sugars (glucose ten meals, sucrose eighteen meals, lactose nine meals, maize starch sixteen meals) as well as a protein-mineral-vitamin premix.2. After each meal the reducing sugars appeared in the portal blood in successive waves. The porto-arterial differences in the concentration of reducing sugars, representing the real appearance of sugar-hydrolysis products in the animal, varied greatly according to the sugar ingested and its level of intake. For each level of intake, these differences were larger, but of shorter duration, for glucose and sucrose than for maize starch. For these three carbohydrates, the higher the level of ingestion, the larger and the more persistent the porto-arterial differences. Lactose represented a special case, as the porto-arterial differences of reducing sugars were always much lower than those obtained with the other sugars and they did not vary with the level of intake.3. Our findings show that the products formed by feeding glucose and sucrose appear more rapidly in the portal blood than those formed by feeding lactose. Accordingly, the length of time of digestion of glucose and sucrose is shorter than that of maize starch and lactose.Sugars ingested by man and monogastric animals are mainly polysaccharides although, in certain circumstances, disaccharides and even monosaccharides are also ingested. In the pig, dietary energy generally comes from cereal starch, but sometimes from industrial by-products such as whey or molasses which contain other types of carbohydrate (lactose, sucrose). However, use of dietary sugars, such as lactose (FCvrier, 1969) or sucrose (Brooks & Iwanaga, 1967; Aherne et al. 1969), does not lead to the same results especially for growth and nitrogen retention; in addition, their influence is variable according to age (Ekstrom et al. 1975). As the supply of energy-giving nutrients at the sites of protein synthesis should synchronize with the supply of amino acids to make the synthetic process optimal (Elman, 1953), variations in the nutritive value of sugars might be due to a different chronology in their digestion and in the absorption of their hydrolysis products, as well as to the different nature of the latter. Until now, estimation of the amounts of nutrients available for the animal during digestion was made by means of the digestibility method which allows the disappearance of nutrients during their oral-aboral transit to be measured but does not quantify the precise kinetics of their appearance in the organism and their transformation during transit and absorption. These kinetic aspects of the appearance of nutrients in the animal may be estimated from the enric...
Iron deficiency is the most common human nutritional disorder in the world. Iron absorptive capacity of the small intestine is known to be much limited and therefore large quantities of iron salts must be used to treat iron deficiency. As a result, significant amounts of iron may reach the large intestine. This study compared the capacities of the small and large intestine to transfer luminal iron to the venous blood in relationship with the expression in epithelial cells of proteins involved in iron absorption using a pig model. Intracaecal injection of iron sulphate corresponding with 2.5 and 5.0 mg elemental iron per kg body mass resulted in modest, transient, but significant (p<0.05) increases in iron concentration in the portal blood plasma. By comparing portal blood plasma iron concentrations following injection in the duodenal and caecal lumen, we calculated that 5 h after injection, iron colonic absorption represented approximately 14% of duodenal absorption. Caecal and proximal colon mucosa accumulated iron to a much lower extent than the duodenal mucosa. Isolated colonocytes were found to express divalent metal transporter (DMT1) and ferritin, but to a lesser extent than the duodenal enterocytes. Ferroportin was highly expressed in colonocytes. In these cells as well as in enterocytes ferroportin was found to be glycosylated. In short term experiments and at a concentration in the range of that measured in the aqueous phases recovered from the large intestine luminal content after iron injection, iron sulphate did not alter colonocyte viability. We concluded that the colonic epithelial cells that express proteins involved in iron absorption are able to transfer luminal iron to the venous blood even if its relative participation in the overall intestinal absorption appears to be modest under our experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.