SUMMARYA finite volume turbulence model for the resolution of the two-dimensional shallow water equations with turbulent term is presented. After making a finite volume discretization of the depth-averaged kequations in conservative form, the q-r equations, that give stability to the process, are obtained. Wall and inlet boundary conditions for the turbulent equations and wall conditions for the hydrodynamic equations are discussed. A comparison between the k-and q-r models and some experimental results is made.
The present research is concerned with some numerical developments and practical application of a physically based numerical model FreshWaterSheds that incorporates a finite element solution to the steady/transient problems of the joint ground/surface fresh/salt water flows in inland and coastal regulated watersheds. The proposed model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach. Infiltration rates, overland flows and evapotranspiration processes are considered by diffuse discharge from surface water, unsaturated subsoil and groundwater table. New improvements also allow for the management of surface water flow control through the capacity of diversion on flooding zones of catchment areas, as well as on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the flooding hazard of Aznalcóllar toxic spillages. This flooding disaster was caused by the sequential ruptures of the dikes of two mining residual reservoirs of a pyrite mine, releasing about 10•10 6 m 3 of contaminated wastewater and mining sludge onto the Guadiamar River. The numerical model was adapted to the wastewater and sludge properties of both sudden spillages, as well as to the river bed, the flooded zones and the underneath alluvial aquifer. The model simulation and calibration were made during the date of this hydrological hazard to the likely discharges and dual hydrograph produced by the sudden twofold failure of both reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.