In today's modern communication systems, miniaturized and lightweight subsystems covering broad bandwidth are in much demand as they lead to realization of very compact and lightweight systems. A printed podal Vivaldi antenna with single as well as double cavities fed with strip line transmission line and operating from X band to K U band (8-18 GHz) is proposed. The comparison of antenna performance for single cavity and double cavity is also reported. Using double cavity, the miniaturization of antenna is possible as compared to single cavity Vivaldi antenna. The antenna is first designed using conventional theoretical approaches. Later, it is simulated using a 3D EM simulation software, CST Microwave Studio TM. The optimal value for taper length is 6.86455 cm and cavity diameter is 1.582 cm. Finally, the design is physically fabricated using PCB technology for carrying out practical measurement. The antenna's input impedance characteristic is measured in the form of S-parameter and VSWR using Vector network analyzer. VSWR less than 3:1 is achieved over the band from 8 to 18 GHz. The radiation pattern measurements are carried out in anechoic chamber. The proposed Vivaldi antenna is used for digital data transmission via satellites and for voice/audio transmissions.
Objectives: Efficient antenna design for use in communication systems is altering the face of the antenna modeling. The ever-increasing demand for portable and efficient antennas is making researchers to develop innovative models [1] using advanced antenna modeling tools that comply with industrial needs and standards. Methods/Statistical Analysis: Antennas with lower operating frequencies have the major constraints on its size, efficiency and gain. Study on matching techniques, feeding techniques was also to be considered. Findings: Micro strip patch antennas offers considerable amount of radiation, low cost when fabricated on FR4, light weight and are conformable to suite any application. This paper projects the design, simulation and testing of a dual octagonal patch, the topology algorithm [3] is used to optimize the size and shape of the patch where octagons are spaced in the form of an array to address optimization on size and fits into wireless applications. Application/Improvements: The proposed model is tested in the standard antenna test bench comprising of microwave integrated circuit analyzer receiver MIC10kit and found to operate at a resonant frequency of 1.8 GHz with good radiation characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.