Fe3O4-implanted ZnO and pristine ZnO nanosheets have been synthesized hydrothermally. High-resolution scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, selected area electron diffractometry, powder X-ray diffractometry, Raman spectroscopy, vibrating sample magnetometry, solid state impedance spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy show implantation of Fe3O4 in ZnO nanosheets. Fe3O4 core with ZnO shell is of type I core/shell heterostructure which is to quench charge carriers and suppress photocatalysis. But the photocatalytic activity is not suppressed on implantation of Fe3O4 in ZnO nanosheets, and time controlled single photon counting lifetime spectroscopy shows that the photogenerated charge carriers are not quenched by the Fe3O4 core in the ZnO nanosheets. The composite nanosheets are photostable, reusable, and magnetically recoverable, revealing potential application in mineralization of organic pollutants.
A charge carrier-non-quenching magnetic core implanted in nanocrystalline ZnO and deposited with metallic Ag for superior bactericidal and photocatalytic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.