Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations (100 µg/ml-300 µg/ml) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity (P≤0.05) with IC 50 of 200 µg/ml and 250 µg/ml against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.
Nowadays, nanotechnology is used as a way to increase bioavailability and decrease the side effects of drugs and nutrients. Micronutrients and nutraceuticals such as vitamins, carotenoids, polyunsaturated fatty acids and polyphenols are classes of food ingredients that are essential for human health and well-being. These compounds are rarely added purely to the targeted food application but rather in encapsulated, solid, dry product forms with added functionalities such as improved stability, bioavailability or handling. Development of new strategies, like nanocarriers, that help to promote the access of neuroprotective molecules to the brain, is needed for providing more effective therapies for the disorders of the Central Nervous System (CNS). Polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. Active targeting of nanoparticles loaded with vitamin D to cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.