Abstract. The morphological segmentation of binary patterns provides an effective method for characterising spatial patterns with emphasis on connections between their parts as measured at varying analysis scales. The method is widely used for the analysis of landscape patterns such as those related to the fragmentation of forests or other natural land cover classes. This can be explained by its effectiveness at capturing the complexity of binary patterns and their connections by partitioning the foreground pixels of the corresponding binary images into mutually exclusive classes. While the principles of the method are conceptually simple, the definition of the classes relies on a series of advanced mathematical morphology operations whose actual implementation is not straightforward. In this paper, we propose an open source code for MSPA and detail its main components in the form of pseudo-code. We demonstrate its effectiveness for asynchronous processing of tera-pixel images and the synchronous exploratory analysis and rendering with Jupyter notebooks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.