SUMMARY Low‐angle normal faulting is widely discussed as a possible mechanism for continental extension, however, unambiguous evidence for seismogenic low‐angle normal faulting is lacking. Here, we investigate seismicity along a short segment of the Pumqu‐Xianza Rift (PXR) in southern Tibet, where the HiCLIMB seismic array recorded over 500 earthquakes between 2004 July and 2005 August. Hypocentres of the 40 best recorded earthquakes are approximately 20–25 km west of the rift and tightly clustered at about 10 km depth, consistent with moment tensor depths of the 11 largest (3.4 ≤Mw≤ 4.5) earthquakes. Events in this group have N–S striking normal faulting mechanisms with low‐angle (29°) west dipping fault planes. Rupture along a west dipping, low‐angle, planar normal fault (the eastern PXR boundary fault) is consistent with event hypocentres, fault dip from moment tensors, and prominent surface morphology. The dip of 29° is at the low end of physically possible values assuming normal frictional behaviour and state of stress. We suggest it is possible for a planar, low‐angle fault to nucleate seismically at a low angle at depth in the presence of basal shear and work its way aseismically through the brittle crust to the surface with the aid of lubricating minerals.
[1] Ocean bottom seismic observations within the 9°50 0 N region of the East Pacific Rise indicate persistent, low-amplitude tremor activity throughout the October 2003 through February 2007 period of monitoring. These signals exhibit either monochromatic or polychromatic spectral characteristics, with a $6 Hz fundamental frequency and up to two harmonics. Individual events cannot be correlated between nearby (<1 km) stations, implying the presence of multiple, small-amplitude sources positioned within the shallow crust. Tremor exhibits a semidiurnal periodicity, with some stations recording activity during times of increasing tidal extension and others detecting tremor signals during times of increasing compression. The amplitude, duration, and rate of activity also correlate positively with fortnightly changes in the amplitude of the tides. These spatiotemporal patterns are consistent with tremor generation in response to tidally modulated fluid flow within a network of shallow cracks. Tremor energy flux is spatially and temporally heterogeneous; however, there are extended periods of greater and lesser activity that can be tracked across portions of the array. Despite their shallow crustal origin, changes in tremor amplitude and spectral character occur in the months prior to a major microearthquake swarm and inferred seafloor spreading event on 22 January 2006, with an increase in the degree of correlation between tremor activity and tidal strain in the weeks leading up to this event. After the spreading event, two eruption-surviving stations near the axis continue to show high rates of tremor activity, whereas these signals are suppressed at the single station recovered from the near-axis flanks. This off-axis quiescence may result from the dikeinduced closing of cracks or perhaps from the emplacement of impermeable flows near the station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.