Allelopathic rice can release allelochemicals from roots to inhibit neighboring plant species, but little is currently known about their fate and impact on microorganisms in paddy soil. This study showed that allelopathic rice PI312777 released much higher concentrations of allelochemical (5,7,4'-trihydroxy-3',5'-dimethoxyflavone) than non-allelopathic rice Liaojing-9 in field. When quantitative 5,7,4'-trihydroxy-3',5'-dimethoxyflavone was added into soil, flavone gave a short half-life of 18.27 +/- 2.32 h (r(2) = 0.94) and could easily be degraded into benzoic acid. Benzoic acid with a half-life of 29.99 +/- 2.19 h (r(2) = 0.96) was more resistant toward degradation in paddy soil. Furthermore, both the culturable microbial population and the entire microbial community structure of soil incubated with flavone and benzoic acid were evaluated using the soil dilution plate method and phospholipid fatty acid (PLFA) analysis, respectively. It appeared from the results that flavone could reduce microorganisms especially for fungi present in paddy soil, while benzoic acid could induce a higher response for soil microorganisms especially for bacteria. Consequently, flavone would be responsible for the dynamics of soil microorganisms during the early period, and any observed effect during the late period would be very likely due to its degradation product benzoic acid rather than flavone itself. These results suggested that allelopathic rice varieties could modify soil microorganisms to their advantage through the release of allelochemicals. The concentration and fate of discriminating 5,7,4'-trihydroxy-3',5'-dimethoxyflavone between allelopathic and non-alleloparhic varieties tested in rice soil would result in the different patterns of microbial population and community structure in paddy ecosystems.
The topologically nontrivial edge states induce transition in Su-Schrieffer-Heeger (SSH) chain with one pair of gain and loss at boundaries. In this study, we investigated a pair of -symmetric defects located inside the SSH chain, in particular, the defects locations are at the chain centre. The symmetry breaking of the bound states leads to the transition, the -symmetric phases and the localized states were studied. In the broken -symmetric phase, all energy levels break simultaneously in topologically trivial phase; however, two edge states in topologically nontrivial phase are free from the influence of the -symmetric defects. We discovered -symmetric bound states induced by the -symmetric local defects at the SSH chain centre. The -symmetric bound states significantly increase the transition threshold and coalesce to the topologically protected zero mode with vanishing probabilities on every other site of the left-half chain and the right-half chain, respectively.
We studied the critical dynamics of spectral singularities. The system investigated is a coupled resonator array with a side-coupled loss (gain) resonator. For a gain resonator, the system acts as a wave emitter at spectral singularities. The reflection probability increased linearly over time. The rate of increase is proportional to the width of the incident wave packet, which served as the spectral singularity observer in the experiment. For a lossy resonator, the system acts as a wave absorber. The emission and absorption states at spectral singularities coalesce in a finite parity-time (PT ) symmetric system that combined by the gain and loss structures cut from corrresponding scattering systems at spectral singularities; in this case, the PT -symmetric system is at an exceptional point with a 2 * 2 Jordan block. The dynamics of the PT -symmetric system exhibit the characteristic of exceptional points and spectral singularities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.