Decitabine, which reverses hypermethylation of the p15(INK4B) gene in vitro, has been used to relieve cytopenias and blast excess in over 50% of patients with high-risk myelodysplastic syndrome (MDS). In this study, heme oxygenase-1 (HO-1) was overexpressed in MDS cell line SKM-1, which was closely related to resistance to decitabine-induced apoptosis. We aimed to further investigate the role of HO-1 in apoptosis induced by low-dose decitabine in SKM-1 cells. Upregulation of HO-1 by transfecting it into SKM-1 cells with lentivirus vector promoted cell proliferation and protected them against apoptosis. In contrast, downregulation of HO-1 enhanced decitabine-induced apoptosis but reduced accumulation of the S phase in cell cycle. To explore the mechanism, the expressions of cell cycle-related proteins were detected after the cells were treated by decitabine in each group. p15(INK4B) and CDK4 were overexpressed in SKM-1 cells in which HO-1 was inhibited, and the expression-depending apoptosis was related to the caspase-3 pathway. Even though HO-1 was silenced, the apoptotic rate never increased as the caspase-3 pathway was blocked. It is well known that p15(INK4B) dominantly regulates the S phase of the cell cycle. p15(INK4B) was herein demethylated more evidently in the group of SKM-1 cells in which HO-1 was downregulated, as well as in the mononuclear cells of patients suffering from MDS. In the case of poor prognosis, the mRNA level of HO-1 was raised. In conclusion, overexpression of HO-1 indicated resistance to demethylation of p15(INK4B) induced by decitabine.
ABSTRACT. We evaluated the influence of heme oxygenase-1 (HO-1) gene inhibition in myelodysplastic syndrome (MDS) cell line SKM-1 on enhancement of the demethylating effects of decitabine on p15, and explored the possible mechanism. DNMT1 gene expression in SKM-1 cells was silenced by being transfected by a constructed siRNA with liposomes. The proliferation inhibition rates after drug treatment were detected by cell counting kit-8 assay. The apoptotic rates were detected by Annexin V/PI assay with flow cytometry. The expressions of p16, p15, TP73, CDH1, ESR1, and PDLIM4 mRNAs were detected by real-time PCR, and those of HO-1, DNMT1, DNMT3A, DNMT3B, HDAC, and p15 proteins were measured by western blot. The degree of methylation of the p15 gene was analyzed by using methylation-specific PCR (MSP). CCK-8 assay showed that after HO-1 gene expression was inhibited; the proliferation rate of SKM-1 cells treated by decitabine (70.91 ± 0.05%) was significantly higher than that of the control group (53.67 ± 0.05%). Flow cytometry showed that the apoptotic rate of SKM-1 cells treated by decitabine in combination with HO-1 expression inhibition (44.25 ± 0.05%) exceeded that of the cells treated by this drug alone (37.70 ± 0.05%). MSP showed that inhibiting HO-1 expression significantly increased the degree of methylation of the p15 gene. As suggested by western blot, the degree of methylation of the p15 protein was changed after decitabine treatment when the expression of the HO-1 protein was changed, being associated with the affected DNMT1 expression. Inhibited HO-1 expression attenuated the hypermethylation of CDKN2B by suppressing DNMT1, which was conducive to treatment by cooperating with decitabine. In conclusion, the findings of this study provide valuable experimental evidence for targeted MDS therapy, and a theoretical basis for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.