LETTER • OPEN ACCESSFirst patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, highfield MRI guided radiotherapy treatment AbstractThe integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac.Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while Letter Institute of Physics and Engineering in MedicineOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 3 Author to whom any correspondence should be addressed. the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm.In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.
Recently, multileaf collimator (MLC)-tracking has been technically and clinically demonstrated showing promising improvements of radiotherapy of mobile sites. Furthermore, magnetic resonance imaging (MRI)-guided treatments have shown to provide superior targetting performance due to on-line soft-tissue imaging. Hitherto, the combination of MLC-tracking and MRI has not been investigated using clinically released hardware. In this note we aim to describe the technical feasibilty of such a combination on a clinically operating MRI-linac. The MLC-tracking system is characterized by quantifying the latencies and geometric errors produced by the system. In order to reach optimization recommendations, the tracking system was first characterized using a quasi-ideal position sensor, isolating the performance of the MLC only. Subsequently, the analysis was repeated using real-time MRI as the positioning source for the MLC. For the isolated MLC, we found latencies of 20.67 ms and minimal overshooting behaviour. The latencies for MRI-guidance were 347.45 ms at 4 Hz imaging and 204 ms at 8 Hz. We showed that MLC-tracking on the Elekta Unity using integrated MRI is technically supported and feasible. The isolated analysis of the MLC demonstrated the negligible contribution of the MLC in MRI-guided tracking. The latency and geometric errors caused by the sampling properties of MRI exceed the MLC-related errors by several factors. Most gain for real-time MRI-based adaptive radiotherapy can therefore be realized by optimizing and accelerating the MRI acquisition process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.