Using the nonlocal strain gradient theory, we explore vibration behaviours of initially bidirectional tensioned functionally graded nanoplates with axial speed. The governing equation of motion can be obtained based on the differential type of nonlocal strain gradient constitutive relation, which characters the dynamics of nanostructures containing kinematic relation. The simply supported boundary constraints on four sides are considered and subsequently the numerical results are determined. It shows that natural frequencies of axially moving nanoplates decrease when increasing the axial speed and the nonlocal parameter. Hence the nonlocal and kinematic factors cause the natural frequencies to decrease or, weaken the equivalent bending rigidity. On the other hand, natural frequencies increase with an increase in the axial tension and material characteristic scale. Hence the strain gradient and tensile stress factors cause the natural frequencies to increase or, strengthen the equivalent bending rigidity. In addition, the natural frequencies get higher with a larger aspect ratio of the functionally graded nanoplate. The larger one between the nonlocal parameter and the material characteristic scale plays a dominant role in the softening and stiffening mechanisms of the nonlocal strain gradient effect. In case of the same magnitude of the nonlocal parameter and the material characteristic scale, the softening and hardening phenomena disappear. The equivalent bending rigidity neither increases nor decreases in such a situation, and its value degenerates to the classical one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.