Extracellular matrix protein 1 (ECM1) is related to strong invasiveness and poor prognosis in major malignancies, but the underlying mechanism remains unknown. Here we aimed to elucidate the function of ECM1 on cell metastasis and glucose metabolism in gastric cancer (GC). The level of ECM1 in sera and tissues of patient with GC were positively correlated with tumor invasion and recurrence. Genetic manipulation of ECM1 expression affected cell metastasis and glucose metabolism in GC cell lines. Enhanced ECM1 expression facilitated gene expression levels associated with epithelial-mesenchymal transition (EMT) and glucose metabolism. Interestingly, our results indicated that ECM1 directly interacted with integrin β4 (ITGB4) and activated ITGB4/focal adhesion kinase (FAK)/glycogen synthase kinase 3β signaling pathway, which further induced the expression of transcription factor SOX2. Aberrant expression of SOX2 altered gene expression of EMT factors and glucose metabolism enzymes. Furthermore, SOX2 enhanced hypoxia-inducible factor α (HIF-1α) promoter activity to regulate glucose metabolism. The micro-positron emission tomography/computed tomography imaging of xenograft model showed that ECM1 substantially increased F-fluorodeoxyglucose uptake in xenograft tumors. Using in vivo mouse tail vein injection experiments, ECM1 was also found to increase in lung surface metastasis. These findings provide evidence that ECM1 regulates GC cell metastasis and glucose metabolism by inducing ITGB4/FAK/SOX2/HIF-1α signal pathway and have important implications for the development of therapeutic target to prevent tumor metastasis and recurrence.
Large-scale sequencing studies on glioblastoma have identified numerous genetic alterations.Leucine-zipper-like transcription regulator 1 (LZTR1) is inactivated by non-synonymous mutations and copy number losses, suggesting that it is a tumor suppressor in glioblastoma.However, how LZTR1 mutations contribute to glioblastoma pathogenesis remains poorly understood. Here, we revealed that LZTR1, as an adaptor of the CUL3 E3 ubiquitin ligase complex, recognizes and triggers ubiquitin-dependent degradation of oncoprotein RIT1, a RAS-like GTPase. Wild-type LZTR1 suppresses glioblastoma cell proliferation and migration by inactivating the MAPK/ERK signaling pathway in a RIT1-dependent manner. However, the effects were abrogated by the glioblastoma-associated LZTR1 mutations. Our findings revealed the underlying molecular mechanism of LZTR1 mutations-driven glioblastoma, and provide novel therapeutic target for LZTR1 mutations-driven glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.