Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
We present an exact model of the detection statistics of a probabilistic source of photon pairs from which a fast, simple and precise method to measure the source's brightness and photon channel transmissions is demonstrated. We measure such properties for a source based on spontaneous parametric downconversion in a periodically poled LiNbO 3 crystal producing pairs at 810 and 1550 nm wavelengths. We further validate the model by comparing the predicted and measured values for the g (2) (0) of a heralded single photon source over a wide range of the brightness. Our model is of particular use for monitoring and tuning the brightness on demand as required for various quantum communication applications. We comment on its applicability to sources involving spectral and/or spatial filtering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.