In this work, we demonstrate the existence of universal adversarial audio perturbations that cause mis-transcription of audio signals by automatic speech recognition (ASR) systems. We propose an algorithm to find a single quasi-imperceptible perturbation, which when added to any arbitrary speech signal, will most likely fool the victim speech recognition model. Our experiments demonstrate the application of our proposed technique by crafting audio-agnostic universal perturbations for the state-of-the-art ASR system -Mozilla DeepSpeech. Additionally, we show that such perturbations generalize to a significant extent across models that are not available during training, by performing a transferability test on a WaveNet based ASR system.
In this work, we develop methods to repurpose text classification neural networks for alternate tasks without modifying the network architecture or parameters. We propose a context based vocabulary remapping method that performs a computationally inexpensive input transformation to reprogram a victim classification model for a new set of sequences. We propose algorithms for training such an input transformation in both white box and black box settings where the adversary may or may not have access to the victim model's architecture and parameters. We demonstrate the application of our model and the vulnerability of neural networks by adversarially repurposing various text-classification models including LSTM, bi-directional LSTM and CNN for alternate classification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.