Research Impact Statement: Methodology to prioritize areas of soil and water management and conservation in basins. A decision-making tool for the implementation of targets 6.6, 15.1-15.2 of the Sustainable Development Goals.ABSTRACT: Integrated watershed management (IWM) is a priority, especially in semiarid regions that are concurrently affected by population growth, land use change, soil erosion, and poor governance. In developing countries, IWM is often done without any support tool, scientific data, or deep knowledge of territory characteristics. The aim of this study was to present a case study to apply a decision support tool to prioritize areas for territory management. A simple, quantitative multi-criteria analysis was applied in a semiarid basin of the Ecuadorian Andes to identify the zones of greatest concern for implementation of resource conservation and management practices at a local and regional scale. In addition to describing the current state of the conditions of this basin, our results suggest scenarios of change in relation to official population projections based on spatial analysis of land use change. Analysis resulted in a scattered distribution of priority values within the watershed, so a hierarchical rule was incorporated to define priorities at the subwatershed (SW) scale. Our analysis identified four SW of very high priority and urgent need to implement management practices. Based on projections of future change due to population growth and land cover change, the number of subbasins that require more attention was doubled. Finally, this study includes zones for management or conservation of the land, according to the Sustainable Development Goals.(KEYWORDS: decision support systems -DSS; integrated watershed management -IWM; SDGs; spatial modeling; semiarid basins.)Paper No. JAWRA-18-0106-P of the
Mangrove forests play an important role in mitigating climate change but are threatened by aquaculture expansion. The inclusion of mangroves in climate change mitigation strategies requires measuring of carbon stocks and the emissions caused by land use change over time. This study provides a synthesis of carbon stocks in mangrove and shrimp ponds in the Gulf of Guayaquil. In this study area, we identified 134,064 ha of mangrove forest and 153,950 ha of shrimp farms. Two mangrove strata were identified according to their height and basal area: medium-statured mangrove (lower height and basal area) and tall mangrove (greater height and basal area). These strata showed statistical differences in aboveground carbon stocks. In both strata, the most abundant mangrove species was Rhizophora mangle. For both strata, trees had a maximum height (>30 m), and their density was greater than 827 ha−1. Total ecosystem level carbon stocks (measured to 1 m soil depth) were 320.9 Mg C ha−1 in medium-statured mangroves and 419.4 Mg C ha−1 in tall mangroves. The differences are attributable to higher basal area, soil organic carbon concentrations and salinity, tidal range, origin of allochthonous material, and herbivory patterns. Mangrove soils represented >80% of the total ecosystem carbon. Ecosystem carbon stocks were lower (81.9 Mg C ha−1) in the shrimp farms, 50% less than in undisturbed mangroves. Our results highlight mangroves as tropical ecosystems with extremely high carbon storage; therefore, they play an important role in mitigating climate change. This research provides a better understanding of how carbon stocks in this gulf are found and can be used for design strategies to protect global natural carbon sinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.