The electrical activity of a neuron is strongly dependent on the ionic channels present in its membrane. Modifying the maximal conductances from these channels can have a dramatic impact on neuron behavior. But the effect of such modifications can also be cancelled out by compensatory mechanisms among different channels. We used an evolution strategy with a fitness function based on phase-plane analysis to obtain 20 very different computational models of the cerebellar Purkinje cell. All these models produced very similar outputs to current injections, including tiny details of the complex firing pattern. These models were not completely isolated in the parameter space, but neither did they belong to a large continuum of good models that would exist if weak compensations between channels were sufficient. The parameter landscape of good models can best be described as a set of loosely connected hyperplanes. Our method is efficient in finding good models in this complex landscape. Unraveling the landscape is an important step towards the understanding of functional homeostasis of neurons.
The increase in complexity of computational neuron models makes the hand tuning of model parameters more difficult than ever. Fortunately, the parallel increase in computer power allows scientists to automate this tuning. Optimization algorithms need two essential components. The first one is a function that measures the difference between the output of the model with a given set of parameter and the data. This error function or fitness function makes the ranking of different parameter sets possible. The second component is a search algorithm that explores the parameter space to find the best parameter set in a minimal amount of time. In this review we distinguish three types of error functions: feature-based ones, point-by-point comparison of voltage traces and multi-objective functions. We then detail several popular search algorithms, including brute-force methods, simulated annealing, genetic algorithms, evolution strategies, differential evolution and particle-swarm optimization. Last, we shortly describe Neurofitter, a free software package that combines a phase-plane trajectory density fitness function with several search algorithms.
The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model.We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC) model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.