Schiff-condensation reactions carried out between 1,6-diaminopyrene (DAP) and the tritopical 1,3,5 benzenetricarbaldehyde (BTCA) or 2,4,6-triformylphloroglucinol (TP) ligands give rise to the formation of two-dimensional imine-based covalent-organic frameworks (COFs), named IMDEA-COF-1 and -2, respectively. These materials show dramatic layer-packing-driven fluorescence in solid state arising from the three-dimensional arrangement of the pyrene units among layers. Layer stacking within these 2D-COF materials to give either eclipsed or staggered conformations can be controlled, at an atomic level through chemical design of the building blocks used in their synthesis. Theoretical calculations have been used to rationalize the different preferential packing between both COFs. IMDEA-COF-1 shows green emission with absolute photoluminescence quantum yield of 3.5% in solid state. This material represents the first example of imine-linked 2D-COF showing emission in solid state.
Layered covalent organic frameworks (2D‐COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen‐enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine‐linked 2D‐COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine‐linked 2D‐COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki–Miyaura cross‐coupling reactions.
Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in:Chemical Communications 55.10 (2019): 1382-1385 DOI: http:// dx.
El acceso a la versión del editor puede requerir la suscripción del recursoAccess to the published version may require subscription
Covalent organic frameworks (COFs) are porous materials formed through condensation reactions of organic molecules via the formation of dynamic covalent bonds. Among COFs, those based on imine and β-ketoenamine linkages offer an excellent platform for binding metallic species such as copper to design efficient heterogeneous catalysts. In this work, imine-and β-ketoenamine-based COF materials were modified with catalytic copper sites following a metallation method, which favored the formation of binding amine defects. The obtained copper-metallated COF materials were tested as heterogeneous catalysts for 1,3-dipolar cycloaddition reactions, resulting in high yields and recyclability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.