In the classical theory of fluid mechanics a linear relationship between the shear stress and the symmetric velocity gradient tensor is often assumed. Even when a nonlinear relationship is assumed, it is typically formulated in terms of an explicit relation. Implicit constitutive models provide a theoretical framework that generalises this, allowing for general implicit constitutive relations. Since it is generally not possible to solve explicitly for the shear stress in the constitutive relation, a natural approach is to include the shear stress as a fundamental unknown in the formulation of the problem. In this work we present a mixed formulation with this feature, discuss its solvability and approximation using mixed finite element methods, and explore the convergence of the numerical approximations to a weak solution of the model.
We devise 3-field and 4-field finite element approximations of a system describing the steady state of an incompressible heat-conducting fluid with implicit non-Newtonian rheology. We prove that the sequence of numerical approximations converges to a weak solution of the problem. We develop a block preconditioner based on augmented Lagrangian stabilisation for a discretisation based on the Scott–Vogelius finite element pair for the velocity and pressure. The preconditioner involves a specialised multigrid algorithm that makes use of a space decomposition that captures the kernel of the divergence and non-standard intergrid transfer operators. The preconditioner exhibits robust convergence behaviour when applied to the Navier–Stokes and power-law systems, including temperature-dependent viscosity, heat conductivity and viscous dissipation.
We propose an augmented Lagrangian preconditioner for a three-field stress-velocitypressure discretization of stationary non-Newtonian incompressible flow with an implicit constitutive relation of power-law type. The discretization employed makes use of the divergence-free Scott-Vogelius pair for the velocity and pressure. The preconditioner builds on the work [P. E. Farrell, L. Mitchell, and F. Wechsung, SIAM J. Sci. Comput., 41 (2019), pp. A3073-A3096], where a Reynolds-robust preconditioner for the three-dimensional Newtonian system was introduced. The preconditioner employs a specialized multigrid method for the stress-velocity block that involves a divergence-capturing space decomposition and a custom prolongation operator. The solver exhibits excellent robustness with respect to the parameters arising in the constitutive relation, allowing for the simulation of a wide range of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.