– The dynamics of fish assemblages from seven floodplain lakes of Salado River (Argentina) was monthly analysed during two contrasting hydrological seasons. Partial canonical correspondence analysis indicated that assemblage structure was predictably linked to environmental characteristics that varied along temporal and spatial scales. Species distributed differentially along an environmental gradient of temperature, hydrometric level, conductivity, macrophyte cover and transparency in relation to their sensory capabilities (following piscivory‐transparency‐morphometry model) and life history strategies. During high water season, assemblages were associated with temperature and hydrometric level, factors which varied mainly across temporal scales and exhibit a regional range of action. During low waters, assemblage structure correlated with macrophyte cover and transparency, factors that varied fundamentally on spatial scales and have local impact. These results indicate that the determinism of fish assemblages does not vary substantially between hydrometric periods, although the environmental variables affecting fish assemblages and their scale of action are clearly different.
This field study assessed water quality of Salado River basin by using a set of biomarkers in the fish Prochilodus lineatus. Multiple biomarkers were measured, including morphological indexes (condition factor, liver somatic index), hematological (red and white blood cells) and biochemical (glucose, total protein and cholinesterase activity) parameters. Besides, detoxication and oxidative stress markers (antioxidant enzymes, lipid peroxidation) were measured in liver, gills and kidney. Despite water quality assessment did not show marked differences among sites, biomarkers responses indicate that fish are living under stressful environmental conditions. According to multivariate analysis glucose, glutathione S-transferase activity, lipid peroxidation levels and the count of white blood cells are key biomarkers to contribute to discrimination of sites. So, we suggest use those biomarkers in future monitoring of freshwater aquatic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.