Due to their high propulsive efficiency, counter-rotating open rotors (CRORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. However, this novel engine architecture presents many design and operational challenges both at engine and aircraft level. The assessment of the impact of the main low-pressure preliminary design and control parameters of CRORs on mission fuel burn, certification noise, and emissions is necessary at preliminary design stages in order to identify optimum design regions. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational, or regulatory constraints. Part I of this two-part publication presents a novel 0D performance model for counter-rotating propellers (CRPs) allowing an independent definition of the design and operation of each of the propellers. In Part II, the novel CRP model is used to create an engine performance model of a geared open rotor (GOR). This engine model is integrated in a multidisciplinary simulation platform which was used to assess the impact of the control of the propellers, on specific fuel consumption (SFC), engine weight, certification noise, and NOx emission, for a GOR with a 10% clipped rear propeller designed for a 160 PAX and 5700 NM aircraft. The main conclusions of the study are: (1) Minimum SFC control schedules were identified for climb, cruise, and descent (high-rotational speeds for high thrust and low-rotational speeds for low thrust), (2) SFC reductions up to 2% in cruise and 23% in descent can be achieved by using the minimum SFC control. However, the relatively high SFC reductions in descent SFC result in ∼3.5% fuel saving for a 500 NM and ∼0.7% fuel saving for a full range mission, (3) at least 2–3 dB noise reductions for both sideline and flyover can be achieved by reducing the rotational speeds of the propellers at a cost of ∼6% increase of landing and takeoff cycle (LTO) NOx and 10 K increase in turbine entry temperature, (4) approach noise can be reduced by at least 2 dB by reducing CRP rotational speeds with an associated reduction of ∼0.6% in LTO NOx, and (5) the control of the CRP at takeoff has a large impact on differential planetary gearbox (DPGB) weight, but it is almost identical in magnitude and opposite to the change in low-pressure turbine (LPT) and CRP weight. Consequently, the control of the CRP at takeoff has a negligible impact in overall engine weight.
Direct Drive Open Rotors (DDORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional turbofans. However, this engine architecture presents many design and operational challenges both at engine and aircraft level. At preliminary design stages, a broad design space exploration is required to identify potential optimum design regions and to understand the main trade offs of this novel engine architecture. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational or regulatory constraints. Design space exploration assessments are done with 0-D or 1-D models for computational purposes. These simplified 0-D and 1-D models have to capture the impact of the independent variation of the main design and control variables of the engine. Historically, it appears that for preliminary design studies of DDORS, Counter Rotating Turbines (CRTs) have been modeled as conventional turbines and therefore it was not possible to assess the impact of the variation of the number of stages (Nb) and rotational speed of the propellers. Additionally, no preliminary design methodology for CRTs was found in the public domain. Part I of this two-part publication proposes a 1-D preliminary design methodology for DDOR CRTs. It allows an independent definition of the Nb, rotational speeds of both parts of the CRT, inlet flow conditions, inlet and outlet annulus geometry as well as power extraction. It includes criteria and procedures to calculate: power extraction in each stage, gas path geometry, blade metal angles, flow conditions at each turbine plane and overall CRT efficiency. The feasible torque ratios of a CRT are discussed in this paper. A form factor for the CRT velocity triangles is defined (similar to stage reaction on conventional turbines) and its impact on performance and blade design is discussed. A method for calculating the off-design performance of a CRT is also described in Part I. In Part II, a 0-D design point (DP) efficiency calculation for CRTs is proposed as well as a case study of a DDOR for a 160 PAX aircraft. In the case study, three main aspects are investigated: A) the design and performance of a 20 stage CRT for the DDOR application; B) the impact of the control of the propellers on cruise specific fuel consumption, C) the impact of the design rotational speeds and Nb of the CRT on its DP efficiency, engine fuel consumption and engine weight.
Due to their high propulsive efficiency, counter-rotating open rotors (CRORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. However, this novel engine architecture presents many design and operational challenges both at engine and aircraft level. The assessment of the impact of the main low-pressure preliminary design and control parameters of CRORs on mission fuel burn, certification noise, and emissions is necessary at preliminary design stages in order to identify optimum design regions. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational, or regulatory constraints. The required preliminary design simulation tools should ideally be 0D or 1D (for computational purposes) and should capture the impact of the independent variation of the main low-pressure system design and control variables, such as the number of blades, diameter and rotational speed of each propeller, the spacing between the propellers, and the torque ratio (TR) of the gearbox or the counter-rotating turbine (CRT), among others. From a performance point of view, counter-rotating propellers (CRPs) have historically been modeled as single propellers. Such a performance model does not provide the required flexibility for a detailed design and control study. Part I of this two-part publication presents a novel 0D performance model for CRPs allowing an independent definition of the design and operation of each of the propellers. It is based on the classical low-speed performance model for individual propellers, the interactions between them, and a compressibility correction which is applied to both propellers. The proposed model was verified with publicly available wind tunnel test data from NASA and was judged to be suitable for preliminary design studies of geared and direct drive open rotors. The model has to be further verified with high-speed wind tunnel test data of highly loaded propellers, which was not found in the public domain. In Part II, the novel CRP model is used to produce a performance model of a geared open rotor (GOR) engine with a 10% clipped propeller designed for a 160 PAX and 5700 NM aircraft. This engine model is first used to study the impact of the control of the propellers on the engine specific fuel consumption (SFC). Subsequently, it was integrated in a multidisciplinary simulation platform to study the impact of the control of the propellers on engine weight, certification noise, and NOx emission.
As a consequence of increased stringent engine emission regulations, in a highly competitive market, it has become necessary to explore innovative, economic and environmentally friendly cycles to sustain competitive advantages. Among these innovative cycles, both the geared and the direct drive counter-rotating open rotors, due to their relatively higher propulsive efficiency, have the potential to significantly reduce fuel consumption and emissions relative to conventional high bypass ratio turbofans. A detailed TERA (Technoeconomic Environmental Risk Analysis), multidisciplinary optimisation framework, can be used to optimise both engines and thereby assess their potential as well as quantify their risks on a formal and consistent basis. This technique is based on detailed and rigorous engine performance, aircraft performance, engine geometry, engine weight, noise, gaseous emissions and environmental impact simulation models. No specific performance simulation methodology for counter rotating open rotors is available in the public domain. An innovative technique is introduced, comprising novel models of: • Counter-rotating propellers (including their interaction); • Counter-rotating turbines; • Planetary differential gearboxes. A thorough description of the modelling methodology (with a justification of the main assumptions) of each of these three components is presented and an indication of work in progress is provided. These components are then used to develop direct drive and geared open rotor performance models. The results of steady state design point and off design performance simulations of these two engine models are subsequently presented via two case studies. Some of the differences in the performance of the low pressure system of geared and direct drive open rotors are highlighted. It was observed that the impact of the key OR performance DP parameters is different for the two engines. Consequently the optimal design and control strategies of theses two configurations will differ. The flexibility of the new simulation technique makes it a suitable candidate to perform multi-disciplinary TERA design space exploration and optimisation studies assess and optimise open rotor designs and control strategies in a multidisciplinary framework.
Direct Drive Open Rotors (DDORs) have the potential to significantly reduce fuel consumption and emissions relative to conventional turbofans. However, this engine architecture presents many design and operational challenges both at engine and aircraft level. At preliminary design stages, a broad design space exploration is required to identify potential optimum design regions and to understand the main trade offs of this novel engine architecture. These assessments may also aid the development process when compromises need to be performed as a consequence of design, operational or regulatory constraints. Design space exploration assessments are done with 0-D or 1-D models for computational purposes. These simplified 0-D and 1-D models have to capture the impact of the independent variation of the main design and control variables of the engine. Historically, it appears that for preliminary design studies of DDORs, Counter Rotating Turbines (CRTs) have been modelled as conventional turbines and therefore it was not possible to assess the impact of the variation of the number of stages (Nb) of the CRT and rotational speed of the propellers. Additionally, no preliminary design methodology for CRTs was found in the public domain. Part I of this two-part publication proposes a 1-D preliminary design methodology for DDOR CRTs which allows an independent definition of both parts of the CRT. A method for calculating the off-design performance of a known CRT design is also described. In Part II, a 0-D design point efficiency calculation for CRTs is proposed and verified with the 1-D methods. The 1-D and 0-D CRT models were used in an engine control and design space exploration case study of a DDOR with a 4.26m diameter an 10% clipped propeller for a 160 PAX aircraft. For this application: • the design and performance of a 20 stage CRT rotating at 860 rpm (both drums) obtained with the 1-D methods is presented. • differently from geared open rotors, negligible cruise fuel savings can be achieved by an advanced propeller control. • for rotational speeds between 750 and 880 rpm (relatively low speeds for reduced noise), 22 and 20 stages CRTs are required. • engine weight can be kept constant for different design rotational speeds by using the minimum required Nb. • for any target engine weight, TOC and cruise SFC are reduced by reducing the rotational speeds and increasing Nb (also favourable for reducing CRP noise). However additional CRT stages increase engine drag, mechanical complexity and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.