This work introduces a novel method to assess the social activity maintained by psychiatric patients using information and communication technologies. In particular, we model the daily usage patterns of phone calls and social and communication apps using point processes. We propose a novel nonhomogeneous Poisson process model with periodic (circadian) intensity function using a truncated Fourier series expansion, which is inferred using a trust-region algorithm. We also extend the model using a mixture of periodic intensity functions to cope with the different daily patterns of a person. The analysis of the usage of phone calls and social and communication apps of a cohort of 259 patients reveals common patterns shared among patients with relatively high homogeneity and differences among patient pathologies.
This work models phone call durations via switching Poisson point processes. This kind of processes is composed by two intertwined intensity functions: one models the start of a call, whereas the other one models when the call ends. Thus, the call duration is obtained from the inverse of the intensity function of finishing a call. Additionally, to model the circadian rhythm present in human behavior, we shall use a (positive) truncated Fourier series as the parametric form of the intensities. Finally, the maximum likelihood estimates of the intensity functions are obtained using a trust region method and the performance is evaluated on synthetic and real data, showing good results.
The variability of suicidal thoughts and other clinical factors during follow-up has emerged as a promising phenotype to identify vulnerable patients through Ecological Momentary Assessment (EMA). In this study, we aimed to (1) identify clusters of clinical variability, and (2) examine the features associated with high variability. We studied a set of 275 adult patients treated for a suicidal crisis in the outpatient and emergency psychiatric departments of five clinical centers across Spain and France. Data included a total of 48,489 answers to 32 EMA questions, as well as baseline and follow-up validated data from clinical assessments. A Gaussian Mixture Model (GMM) was used to cluster the patients according to EMA variability during follow-up along six clinical domains. We then used a random forest algorithm to identify the clinical features that can be used to predict the level of variability. The GMM confirmed that suicidal patients are best clustered in two groups with EMA data: low- and high-variability. The high-variability group showed more instability in all dimensions, particularly in social withdrawal, sleep measures, wish to live, and social support. Both clusters were separated by ten clinical features (AUC = 0.74), including depressive symptoms, cognitive instability, the intensity and frequency of passive suicidal ideation, and the occurrence of clinical events, such as suicide attempts or emergency visits during follow-up. Initiatives to follow up suicidal patients with ecological measures should take into account the existence of a high variability cluster, which could be identified before the follow-up begins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.