Structural information on nanometer-sized gold particles has been limited, due in part to the problem of preparing homogeneous material. Here we report the crystallization and x-ray structure determination of a p-mercaptobenzoic acid (p-MBA)-protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs. The central gold atoms are packed in a Marks decahedron, surrounded by additional layers of gold atoms in unanticipated geometries. The p-MBAs interact not only with the gold but also with one another, forming a rigid surface layer. The particles are chiral, with the two enantiomers alternating in the crystal lattice. The discrete nature of the particle may be explained by the closing of a 58-electron shell.
Synthesis, characterization, and functionalization of self-assembled, ligand-stabilized gold nanoparticles are long-standing issues in the chemistry of nanomaterials. Factors driving the thermodynamic stability of well documented discrete sizes are largely unknown. Herein, we provide a unified view of principles that underlie the stability of particles protected by thiolate (SR) or phosphine and halide (PR 3, X) ligands. The picture has emerged from analysis of large-scale density functional theory calculations of structurally characterized compounds, namely Au 102(SR)44, Au39(PR3)14X6 ؊ , Au 11(PR3)7X3, and Au13(PR3)10X2 3؉ , where X is either a halogen or a thiolate. Attributable to a compact, symmetric core and complete steric protection, each compound has a filled spherical electronic shell and a major energy gap to unoccupied states. Consequently, the exceptional stability is best described by a ''noble-gas superatom'' analogy. The explanatory power of this concept is shown by its application to many monomeric and oligomeric compounds of precisely known composition and structure, and its predictive power is indicated through suggestions offered for a series of anomalously stable cluster compositions which are still awaiting a precise structure determination.density functional theory ͉ monolayer-protected cluster
The synthesis of Au(102)(p-MBA)(44) nanoparticles on a preparative scale in high yield is described. Various analytical methods are shown to give results consistent with the composition and known structure of the particles, showing the preparation is essentially homogeneous, and attesting to the validity of the methods as well. Derivatization of the particles with proteins and DNA is demonstrated, and conditions are described for imaging individual particles by cryo-EM at low electron dose, close to focus, conditions optimal for recording high-resolution details.
Water-soluble monolayer-protected gold clusters (MPCs) have been an object of investigation by many research groups since their first syntheses were reported in 1998 and 1999. The basic requirements for a ligand to form a monolayer protecting a gold cluster were established some time ago for alkanethiolate MPCs, but there has been no such information published for water-soluble MPCs. We identify 6 new ligands capable of forming water-soluble MPCs, as well as 22 water-soluble ligands that fail to form MPCs. Our findings contribute not only to the definition of the requirements for MPC formation but also to the variety of MPCs available for applications in chemistry and biology.
A general method of rigid, specific labeling of proteins with gold clusters has been devised. The method relies on the conjugation of a glutathione monolayer-protected gold cluster (MPC) with a single chain Fv antibody fragment (scFv), mutated to present an exposed cysteine residue. Efficient formation of a gold-thiolate bond between the MPC and scFv depends on activation of the gold cluster by chemical oxidation. Once formed, the MPC-scFv conjugate is treated with a reductant to quench cluster reactivity. The procedure has been performed with an MPC with an average Au(71) core and an scFv directed against a tetrameric protein, the influenza neuraminidase. A complex of the MPC-scFv conjugate with the neuraminidase was isolated, and the presence of four gold clusters was verified by cryoelectron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.