Cycads are among the few plants that have developed specialized roots to host nitrogen-fixing bacteria. We describe the bacterial diversity of the coralloid roots from seven Dioon species and their surrounding rhizosphere and soil. Using 16S rRNA gene amplicon sequencing, we found that all coralloid roots are inhabited by a broad diversity of bacterial groups, including cyanobacteria and Rhizobiales among the most abundant groups. The diversity and composition of the endophytes are similar in the six Mexican species of Dioon that we evaluated, suggesting a recent divergence of Dioon populations and/or similar plant-driven restrictions in maintaining the coralloid root microbiome. Botanical garden samples and natural populations have a similar taxonomic composition, although the beta diversity differed between these populations. The rhizosphere surrounding the coralloid root serves as a reservoir and source of mostly diazotroph and plant growth-promoting groups that colonize the coralloid endosphere. In the case of cyanobacteria, the endosphere is enriched with Nostoc spp and Calothrix spp that are closely related to previously reported symbiont genera in cycads and other early divergent plants. The data reported here provide an in-depth taxonomic characterization of the bacterial community associated with coralloid root microbiome. The functional aspects of the endophytes, their biological interactions, and their evolutionary history are the next research step in this recently discovered diversity within the cycad coralloid root microbiome.
Dung beetles are holometabolous insects that feed on herbivorous mammal dung and provide services to the ecosystem including nutrient cycling and soil fertilization. It has been suggested that organisms developing on incomplete diets such as dungs require the association with microorganisms for the synthesis and utilization of nutrients. We describe the diversity and composition of the gut-microbiota during the life cycle of the dung beetle Copris incertus using 16S rRNA gene sequencing. We found that C. incertus gut contained a broad diversity of bacterial groups (1,699 OTUs and 302 genera). The taxonomic composition varied during the beetle life cycle, with the predominance of some bacterial genera in a specific developmental stage (Mothers: Enterobacter and Serratia; Eggs: Nocardioides and Hydrogenophaga; Larval and pupal stages: Dysgonomonas and Parabacteroides; offspring: Ochrobactrum). The beta diversity evidenced similarities among developmental stages, clustering (i) the adult stages (mother, male and female offsprings), (ii) intermediate developmental (larvae and pupa), and (iii) initial stage (egg). Microbiota differences could be attributed to dietary specialization or/and morpho-physiological factors involved in the transition from a developmental stage to the next. The predicted functional profile (PICRUSt2 analysis) for the development bacterial core of the level 3 categories, indicated grouping by developmental stage. Only 36 categories were significant in the SIMPER analysis, including the metabolic categories of amino acids and antibiotic synthesis, which were enriched in the larval and pupal stages; both categories are involved in the metamorphosis process. At the gene level, we found significant differences only in the KOs encoding functions related to nitrogen fixation, uric acid metabolism, and plant cell wall degradation for all developmental stages. Nitrogen fixation and plant cell wall degradation were enriched in the intermediate stages and uric acid metabolism was enriched in mothers. The data reported here suggested the influence of the maternal microbiota in the composition and diversity of the gut microbiota of the offspring.
The karst underground river ecosystem of Yucatan peninsula is composed of cave systems and sinkholes. The microbial diversity of water from this underground river has been studied, but, structure of the microbial community in its cave sediments remained largely unknown. Here we describe how the microbial community structure of these sediments changes due to different environmental conditions found in sediment zones along the caves of a coastal and an inland sinkhole. We found that dominant microbial groups varied according to the type of sinkhole (Coastal: Chloroflexi and Crenarchaeota; inland: Methylomirabilota and Acidobacteriota) and that the community structures differed both among sinkhole types, and within the sediment zones that were studied. These microorganisms are associated with different types of metabolism, and differed from a microbial community dominated by sulfate reducers at the coastal sinkhole, to one dominated by methylotrophs at the inland sinkhole, suggesting there are biogeochemical processes in the coastal and inland sinkholes that lead to changes in the microbial composition of the underground river ecosystem’s sediments. Our results suggest sediments from unexplored sinkhole caves are unique environmental niches with distinct microbial assemblages that putatively play an important role in the biogeochemical cycles of these ecosystems.
Sharpnose sharks (genus Rhizoprionodon) experience extensive fishing pressure throughout their ranges in the Atlantic Ocean. As such, it is important to understand the degree to which intraspecific populations interact across a spatial gradient. The Atlantic sharpnose shark (Rhizoprionodon terraenovae) and Caribbean sharpnose shark (Rhizoprionodon porosus) share a similar appearance and spatial presence within the Gulf of Mexico, though until recently only R. terraenovae was observed north of the Bahamas. We assessed the population structure of R. terraenovae using the mitochondrial control region (650 bp). Our results indicate significant genetic structure (FST = 0.049, P < 0.001; ΦST = 0.017, P = 0.008) between the Gulf of Mexico and the rest of the Atlantic. In addition, we observed R. porosus outside their known range, in South Carolina, Virginia, and northern Florida. Given the overlapping range with R. terraenovae, we assessed the potential for congeneric hybridization with the addition of the nuclear ribosomal internal transcribed spacer 2 gene (1260 bp). Results designate these specimens to be true R. porosus specimens, indicating the need for reevaluation of this species’ range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.