Removal of empty capsids from adeno-associated virus (AAV) manufacturing lots remains a critical step in the downstream processing of AAV clinical-grade batches. Because of similar physico-chemical characteristics, the AAV capsid populations totally lacking or containing partial viral DNA are difficult to separate from the desired vector capsid populations. Based on minute differences in density, ultracentrifugation remains the most effective separation method and has been extensively used at small scale but has limitations associated with availabilities and operational complexities in large-scale processing. In this paper, we report a scalable, robust, and versatile anion-exchange chromatography (AEX) method for removing empty capsids and subsequent enrichment of vectors of AAV serotypes 5, 6, 8, and 9. On average, AEX resulted in about 9-fold enrichment of AAV5 in a single step containing 80% ± 5% genome-containing vector capsids, as verified and quantified by analytical ultracentrifugation. The optimized process was further validated using AAV6, AAV8, and AAV9, resulting in over 90% vector enrichment. The AEX process showed comparable results not only for vectors with different transgenes of different sizes but also for AEX runs under different geometries of chromatographic media. The herein-reported sulfate-salt-based AEX process can be adapted to different AAV serotypes by appropriately adjusting elution conditions to achieve enriched vector preparations.
Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.
Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is an emerging and promising treatment against refractory cancers. However, the currently adopted methods of modification of T cells pose a risk of insertional oncogenesis because lentiviral and retroviral vectors integrate the CAR transgene in a semi‐random fashion. In addition, this therapy is only available using autologous cells, which create problems in production and limit the access for patients who have their T cells depleted. One modification method that shows the ability to overcome both drawbacks is the knock‐in of the CAR simultaneously knocking‐out genes that prevent allogeneic therapy, such as the endogenous T cell receptor. In this mini‐review, the authors present recent efforts to develop safer universal CAR‐T cells. More specifically, the combined application of target‐directed nucleases, which create a double‐strand break at a specific genome locus, and the delivery of CAR DNA via adeno‐associated viral vectors for subsequent integration via homologous recombination and silencing of the targeted gene is focused on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.