Rationale: Lung cancer screening using computed tomography (CT) is effective in detecting lung cancer in early stages. Concerns regarding false-positive rates and unnecessary invasive procedures have been raised. Objective: To study the efficiency of a lung cancer protocol using spiral CT and F-18-fluorodeoxyglucose positron emission tomography (FDG-PET). Methods: High-risk individuals underwent screening with annual spiral CTs. Follow-up CTs were done for noncalcified nodules of 5 mm or greater, and FDG-PET was done for nodules 10 mm or larger or smaller (Ͼ 7 mm), growing nodules. Results: A total of 911 individuals completed a baseline CT study and 424 had at least one annual follow-up study. Of the former, 14% had noncalcified nodules of 5 mm or larger, and 3.6% had nodules of 10 mm or larger. Eleven non-small cell lung cancers (NSCLC) and one small cell lung cancer (SCLC) were diagnosed in the baseline study (prevalence rate, 1.32%), and two NSCLCs in the annual study (incidence rate, 0.47%). All NSCLCs (92% of prevalence cancers) were diagnosed in stage I (12 stage IA, 1 stage IB). FDG-PET was helpful for the correct diagnosis in 19 of 25 indeterminate nodules. The sensitivity, specificity, positive predictive value, and negative predictive value of FDG-PET for the diagnosis of malignancy were 69, 91, 90, and 71%, respectively. However, the sensitivity and negative predictive value of the screening algorithm, which included a 3-month follow-up CT for nodules with a negative FDG-PET, was 100%. Conclusion: A protocol for early lung cancer detection using spiral CT and FDG-PET is useful and may minimize unnecessary invasive procedures for benign lesions.
BackgroundPrognosis of patients with glioblastoma multiforme (GBM) remains dismal, with median overall survival (OS) of about 15 months. It is therefore crucial to search alternative strategies that improve these results obtained with conventional treatments. In this context, immunotherapy seems to be a promising therapeutic option. We hypothesized that the addition of tumor lysate-pulsed autologous dendritic cells (DCs) vaccination to maximal safe resection followed by radiotherapy and concomitant and adjuvant temozolomide could improve patients’ survival.MethodsWe conducted a phase-II clinical trial of autologous DCs vaccination in patients with newly diagnosed patients GBM who were candidates to complete or near complete resection. Candidates were finally included if residual tumor volume was lower than 1 cc on postoperative radiological examination. Autologous DCs were generated from peripheral blood monocytes and pulsed with autologous whole tumor lysate. The vaccination calendar started before radiotherapy and was continued during adjuvant chemotherapy. Progression free survival (PFS) and OS were analyzed with the Kaplan–Meier method. Immune response were assessed in blood samples obtained before each vaccines.ResultsThirty-two consecutive patients were screened, one of which was a screening failure due to insufficient resection. Median age was 61 years (range 42–70). Karnofsky performance score (KPS) was 90–100 in 29%, 80 in 35.5% and 60–70 in 35.5% of cases. MGMT (O6-methylguanine-DNA-methyltransferase) promoter was methylated in 45.2% of patients. No severe adverse effects related to immunotherapy were registered. Median PFS was 12.7 months (CI 95% 7–16) and median OS was 23.4 months (95% CI 16–33.1). Increase in post-vaccination tumor specific immune response after vaccines (proliferation or cytokine production) was detected in 11/27 evaluated patients. No correlation between immune response and survival was found.ConclusionsOur results suggest that the addition of tumor lysate-pulsed autologous DCs vaccination to tumor resection and combined radio-chemotherapy is feasible and safe. A multicenter randomized clinical trial is warranted to evaluate the potential survival benefit of this therapeutic approach. Trial registration This phase-II trial was registered as EudraCT: 2009-009879-35 and ClinicalTrials.gov Identifier: NCT01006044 retrospectively registeredElectronic supplementary materialThe online version of this article (doi:10.1186/s12967-017-1202-z) contains supplementary material, which is available to authorized users.
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive glial brain tumors that primarily affect children, for which there is no curative treatment. Median overall survival is only one year. Currently, the scientific focus is on expanding the knowledge base of the molecular biology of DIPG, and identifying effective therapies. Oncolytic adenovirus DNX-2401 is a replication-competent, genetically modified virus capable of infecting and killing glioma cells, and stimulating an anti-tumor immune response. Clinical trials evaluating intratumoral DNX-2401 in adults with recurrent glioblastoma have demonstrated that the virus has a favorable safety profile and can prolong survival. Subsequently, these results have encouraged the transition of this biologically active therapy from adults into the pediatric population. To this aim, we have designed a clinical Phase I trial for newly diagnosed pediatric DIPG to investigate the feasibility, safety, and preliminary efficacy of delivering DNX-2401 into tumors within the pons following biopsy. This case report presents a pediatric patient enrolled in this ongoing Phase I trial for children and adolescents with newly diagnosed DIPG. The case involves an 8-year-old female patient with radiologically diagnosed DIPG who underwent stereotactic tumor biopsy immediately followed by intratumoral DNX-2401 in the same biopsy track. Because there were no safety concerns or new neurological deficits, the patient was discharged 3 days after the procedures. To our knowledge, this is the first report of intratumoral DNX-2401 for a patient with DIPG in a clinical trial. We plan to demonstrate that intratumoral delivery of an oncolytic virus following tumor biopsy for pediatric patients with DIPG is a novel and feasible approach and that DNX-2401 represents an innovative treatment for the disease.
Our purpose was to analyze the pattern of failure in glioblastoma (GBM) patients at first recurrence after radiotherapy and temozolomide and its relationship with different factors. From 77 consecutive GBM patients treated at our institution with fluorescence guided surgery and standard radiochemotherapy, 58 first recurrences were identified and included in a retrospective review. Clinical data including age, Karnofsky performance score, preoperative tumor volume and location, extend of resection, MGMT promoter methylation status, time to progression (PFS), overall survival (OS) and adjuvant therapies were reviewed for every patient. Recurrent tumor location respect the original lesion was the end point of the study. The recurrence pattern was local only in 65.5 % of patients and non-local in 34.5 %. The univariate and multivariate analysis showed that greater preoperative tumor volume in T1 gadolinium enhanced sequences, was the only variable with statistical signification (p < 0.001) for increased rate of non-local recurrences, although patients with MGMT methylation and complete resection of enhancing tumor presented non-local recurrences more frequently. PFS was longer in patients with non-local recurrences (13.8 vs. 6.4 months; p = 0.019, log-rank). However, OS was not significantly different in both groups (24.0 non-local vs. 19.3 local; p = 0.9). Rate of non-local recurrences in our series of patients treated with fluorescence guided surgery and standard radiochemotherapy was higher than previously published in GBM, especially in patients with longer PFS. Greater preoperative enhancing tumor volume was associated with increased rate of non-local recurrences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.