Storm water overflows have an important impact on the environment in many European countries. Nowadays, a better knowledge of combined sewer overflows (CSOs) pollution is required for implementing measures to reduce these emissions. In this work, pollution flows mobilized during rainy events have been monitored and modeled in two urban catchments located in the city of Murcia (southeast Spain). For each analyzed event, rainfall volume, in-sewer turbidity and water flow depth have been continuously measured. Therefore, sets of pollutographs and hydrographs have been obtained for each event analyzed. Characteristic variables have been defined and obtained for each event such as the maximum concentration of turbidity, the total event rainfall, the previous dry weather period, the time to the peak of the hydrograph and to the peak of the pollutograph, among others. Relations between variables have been adjusted through a statistical model. The adjusted parameters are used to generate pollutographs that are compared with those measured in field. The present work provides tools to assist in the knowledge of pollution transported through sewer network during stormy events, suggesting the creation of design pollutographs which may facilitate the evaluation of measures to reduce urban runoff pollution.
A generalized methodology applicable to any urban sub-catchment to calculate the pollution curve due to combined sewer overflows would help to implement integrated management policies to reduce urban impacts on the environment. An existing methodology to predict the pollutographs associated to rainfall events is tested in five different sub-catchments with very different pluviometry. Ninety-three rainfall events have been considered by measuring the in-sewer turbidity along the runoff episodes. Such data is then evaluated to obtain two prediction indices: the time to peak of pollutograph ITPP, and the maximum turbidity concentration ICMAX. These indices may be used with linear regressions to calculate the characteristics of pollutographs, such as the time to the peak, TPP, the maximum concentration of turbidity, CMAXtb, and the time to descent, TDP. These parameters allow to estimate the pollutographs of a sub-catchment. The comparison between pollutographs measured in the Ensanche sub-catchment and those calculated with the methodology shows a good agreement in terms of the root mean square deviation between samples and estimated values with the model proposed. Hence, the methodology could be a key way to find synthetic pollutographs for any sub-catchment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.