Nineteen percent of the global population may face a high probability of subsidence
Please cite this article as: Martín, P.E., Herrera, G., Sacristán, M.M., Tomás, R., Béjar-Pizarro, M., Marín, R.M., A quasi-elastic aquifer deformational behavior: Madrid aquifer case study, Journal of Hydrology (2014), doi: http:// dx.doi.org/10. 1016/j.jhydrol.2014.08.040 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The use of InSAR (Interferometric Synthetic Aperture Radar) products has greatly increased in the last years because of the technological advances in terms of both acquisition sensors and processing algorithms. The development of multi-interferogram techniques and the availability of free SAR analysis tools has significantly increased the number of worldwide applications of satellite measurements for mapping and monitoring geohazards. InSAR techniques excel in determining ground deformation in urban areas, where the coherence of the radar images is high, and the obtainable results are particularly reliable. Thus, measuring urban subsidence has always been one of the main targets of the InSAR analysis. In this paper, we present a brief review on the applications, in the last decades, of both single and multi-interferogram techniques to monitor ground lowering in urban areas along the Italian Peninsula. Because of its geological context, Italy is prone to slow natural subsidence phenomena sometimes aggravated and accelerated, especially along the coasts and in urbanized areas, by anthropogenic factors (i.e., groundwater overexploitation, consolidation in recent urban expansion, geothermal activities). The review will show how the interferometric data allowed the scientific community to increase the knowledge of the phenomena, map their spatial distribution, and reconstruct their temporal evolution. The final goal of the review is to demonstrate the added value of InSAR data in supporting groundwater management and urban development in Italy.
Landslides are widespread natural hazards that generate considerable damage and economic losses worldwide. Detecting terrain movements caused by these phenomena and characterizing affected urban areas is critical to reduce their impact. Here we present a fast and simple methodology to create maps of vulnerable buildings affected by slow-moving landslides, based on two parameters: (1) the deformation rate associated to each building, measured from Sentinel-1 SAR data, and (2) the building damage generated by the landslide movement and recorded during a field campaign. We apply this method to Arcos de la Frontera, a monumental town in South Spain affected by a slow-moving landslide that has caused severe damage to buildings, forcing the evacuation of some of them. Our results show that maximum deformation rates of 4 cm/year in the line-of-sight (LOS) of the satellite, affects La Verbena, a newly-developed area, and displacements are mostly horizontal, as expected for a planar-landslide. Our building damage assessment reveals that most of the building blocks in La Verbena present moderate to severe damages. According to our vulnerability scale, 93% of the building blocks analysed present high vulnerability and, thus, should be the focus of more in-depth local studies to evaluate the serviceability of buildings, prior to adopting the necessary mitigation measures to reduce or cope with the negative consequences of this landslide. This methodology can be applied to slow-moving landslides worldwide thanks to the global availability of Sentinel-1 SAR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.