In recent years, the use of cermets has shown significant growth in the industry due to their interesting features that combine properties of metals and ceramics, and there are different possible types of cermets, depending on their composition. This review focuses on cemented tungsten carbides (WC), and tungsten carbonitrides (WCN), and it is intended to analyze the relationship between chemical composition and processing techniques of these materials, which results in their particular microstructural and mechanical properties. Moreover, the use of cermets as a printing material in additive manufacturing or 3D printing processes has recently emerged as one of the scenarios with the greatest projection, considering that they manufacture parts with greater versatility, lower manufacturing costs, lower raw material expenditure and with advanced designs. Therefore, this review compiled and analyzed scientific papers devoted to the synthesis, properties and uses of cermets of TiC and WC in additive manufacturing processes reported thus far.
The question of how easy the transition is between design and manufacturing by the 3D printing of periodic open cellular structures occurs from the analysis of cases in which additive manufacturing and heterogeneous catalysis merge. The synergy between these two fields suggests that one of the great advantages that the catalysis of this manufacturing methodology can take advantage of is the obtaining of advanced designs that would allow improving the processes from the geometry of the reactors. However, not all 3D-printing techniques offer the same degree of resolution, and this uncertainty grows when using more complex materials to work with, such as ceramics or metals. Therefore, the present work seeks to answer this question by finding experimentation strategies, starting with a simple case study inspired by the additive manufacturing–catalysis combination, in which a ceramic polymer resin of high thermal resistance is used to obtain POCSs that are potentially useful in thermochemical or adsorption processes. This exploration concludes on the need to define limits for what we have called an “effective work zone” that combines both design criteria and the real possibility of printing and manipulating the pieces, making sweeps in structural parameters such as cell size and the diameter of struts in the POCS. Similarly, the possibility of coating these systems with inorganic oxides is explored, using a generic oxide (Al2O3) to analyse this scenario. Finally, a cartridge-type assembly of these systems is proposed so that they can be explored in future processes by other researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.