This paper investigates the dynamic selection of an appropriate threshold for basic Send-on-Delta (SoD) sampling strategies, given an available transmission rate to reduce the signal tracking-error. The paper formulates the error-reduction principle and proposes an algorithm that calculates, in real time, the amplitude threshold value (also called delta value) for a desired mean transmission rate. The algorithm is implemented to be computed in a Send-on-Delta driver and is tested with three signals that match the step response of a second order control system. Comparison results with a conformant periodic transmission strategy reveals that it improves deeply the tracking-error while maintaining the desired average throughput.
Abstract-This paper provides less conservative stability conditions for bilateral teleoperation by exploiting the advantages of the integral quadratic constraint (IQC) framework, where the environment can be defined as a memoryless, bounded, and monotonic nonlinear operator. Recent advances in multiplier theory for appropriate classes of uncertainties/nonlinearities are applied. Since the classes of multipliers have infinite dimension, parametrization of these multipliers is used to obtain convex searches over a finite number of parameters. The stability of the system is analysed as a Lurye system containing timedelay and monotone nonlinearity. As a result, less conservative delay-dependent conditions can be developed. These results are then applied to bilateral teleoperation. Finally, stability results are tested with different experiments; in particular bilateral teleoperation experiments over the internet between Manchester, UK, and Vigo, Spain, have been carried out. The advantage of the proposed approach is demonstrated by reaching higher transparency index for 2-channel position-force teleoperation while ensuring absolute stability.
This paper addresses the robust stability of teleoperated systems under the four-channel architecture, affected by time-varying communication delays and using disturbance observers. It is based on our previous work which provides a framework for robust stability against delays with bounded variation and a bounded time-derivative, using structured singular values (SSV). The main new feature here is the inclusion of disturbance observers (DOBs). The DOB concept is well-documented and relevant to many applications, since only position (but not force) measurements are usually available. In this paper, we adapt two DOBs (master and slave) to our generic framework, by representing them as stable, fast filters affected by the uncertainty in the plant modelling. Our main result is an SSV test to verify robust stability. The simulation results confirm the usefulness of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.