Abstract. The relationship between communities of submerged annual macrophytes (predominately Chara spp.) and environmental characteristics is studied in three habitats with different dominant perennial species (Arthrocnemum, Juncus, Scirpus) and areas of bare soil. The distribution of submerged annual macrophytes is significantly dependent on two independent environmental factors: a dominant gradient of flooding/salinity, and a secondary gradient of nutrients related exclusively to the combined abundance of helophytes of the genus Scirpus (S. maritimus and S. litoralis). The results suggest that these emergent helophytes (1) are able to modify water column parameters (such as concentration of nitrates, phosphates, potassium, and bicarbonates) which are important for the communities of submerged macrophytes, and (2) play a fundamental role in the generation of secondary sources of environmental variability which, superimposed on the main gradient of flooding/salinity, favours the appearance of new compositional equilibria in such communities.
The existence of a process of facilitation is discussed by which the emergent helophytes induce changes in nutrient availability that would favour relatively nutrient‐demanding charophyte species (such as Chara connivens and Nitella hyalina), altering the established relationships with other coexisting charophytes (such as Chara canescens and C. galioides) that dominate in the absence of the facilitating species. Nevertheless, the increased nutrient concentration associated to the presence of helophytes would not introduce significant changes in the total biomass of submerged aquatic macrophytes.
Spurred by a growing demand for higher-quality mobile services in vertical industries, 5G is integrating a rich set of technologies, traditionally alien to the telco ecosystem, such as machine learning or cloud computing. Despite the initial steps taken in prior research projects in Europe and beyond, additional innovations are needed to support vertical use cases. This is the objective of the 5Growth project: automate vertical support through (i) a portal connecting verticals to 5G platforms (a.k.a. vertical slicer), (ii) closed-loop machine-learning based Service Level Agreement (SLA) control, and (iii) end-to-end optimization. In this paper, we introduce a set of key 5Growth innovations supporting radio slicing, enhanced monitoring and analytics and integration of machine learning.
Wildfires are increasingly making global headlines due to their destructive effects. In many parts of the world, climate change (1), accelerating land-use alterations (2), and other factors are making large wildfires more frequent and their ecological effects more severe (3). Most organisms in the world's fire-prone ecosystems have evolutionary adaptations to cope with natural fire cycles (2). However, ongoing changes in fire regimes, coupled with drier climate and other associated natural and anthropogenic disturbances (4-6), can surpass the capacity of organisms to cope with disturbance (7) and ultimately trigger ecosystem collapse (5). As a result, wildfires are one of the major drivers of change in forest cover worldwide ( 8). Yet, under some circumstances, wildfires can also provide an opportunity for ecosystem restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.