Discriminative feature extraction and rolling element bearing failure diagnostics are very important to ensure the reliability of rotating machines. Therefore, in this paper, we propose multi-scale wavelet Shannon entropy as a discriminative fault feature to improve the diagnosis accuracy of bearing fault under variable work conditions. To compute the multi-scale wavelet entropy, we consider integrating stationary wavelet packet transform with both dispersion (SWPDE) and permutation (SWPPE) entropies. The multi-scale entropy features extracted by our proposed methods are then passed on to the kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. In the end, both the SWPDE–KELM and the SWPPE–KELM methods are evaluated on two bearing vibration signal databases. We compare these two feature extraction methods to a recently proposed method called stationary wavelet packet singular value entropy (SWPSVE). Based on our results, we can say that the diagnosis accuracy obtained by the SWPDE–KELM method is slightly better than the SWPPE–KELM method and they both significantly outperform the SWPSVE–KELM method.
Bearing fault diagnosis methods play an important role in rotating machine health monitoring. In recent years, various intelligent fault diagnosis methods have been proposed, which are mainly based on the features extraction method combined with either shallow or deep learning methods. During the last few years, Shannon entropy features have been widely used in machine health monitoring, improving the accuracy of the bearing fault diagnosis process. Therefore, in this paper, we consider the combination of multi-scale stationary wavelet packet analysis with the Fourier amplitude spectrum to obtain a new discriminative Shannon entropy feature that we call stationary wavelet packet Fourier entropy (SWPFE). Features extracted by our SWPFE method are then passed onto a shallow kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. The proposed method was applied on two experimental vibration signal databases of a rolling element bearing and compared to two recently proposed methods called stationary wavelet packet permutation entropy (SWPPE) and stationary wavelet packet dispersion entropy (SWPPE). Based on our results, we can say that the proposed method is able to achieve better accuracy levels than both the SWPPE and SWPDE methods using fewer failure features. Further, as our method does not require any hyperparameter calibration step, it is less dependent on user experience/expertise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.