California is likely to experience increased coastal flooding and erosion caused by sea-level rise over the next century, affecting the state's population, infrastructure, and environment. As part of a set of studies on climate change impacts to California, this paper analyzes the potential impacts from projected sea-level rise if no actions are taken to protect the coast (a "no-adaptation scenario"), focusing on impacts to the state's population and infrastructure. Heberger et al. (2009) also covered effects on wetlands, costs of coastal defenses, and social and environmental justice related to sealevel rise. We analyzed the effect of a medium-high greenhouse gas emissions scenario (Special Report on Emissions Scenarios A2 in IPCC 2000) and included updated projections of sea-level rise based on work by Rahmstorf (Science 315(5810): 368, 2007). Under this scenario, sea levels rise by 1.4 m by the year 2100, far exceeding historical observed water level increases. By the end of this century, coastal flooding would, under this scenario, threaten regions that currently are home to approximately 480,000 people and $100 billion worth of property. Among those especially vulnerable are large numbers of low-income people and communities of color. A wide range of critical infrastructure, such as roads, hospitals, schools, emergency facilities, wastewater treatment plants, and power plants will also be at risk. Sea-level rise will inevitably change the character of California's coast; practices and policies should be put in place to mitigate the potentially costly and life-threatening impacts of sea-level rise.
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Objectives Here, we present the first record of stable colonies of the South American fur seal (Arctocephalus australis), in an area where their presence has never been documented (hereafter distribution gap), as well as an update of the current distribution range of the species in central Chile. Results A national synoptic aerial census of pinnipeds was performed during the austral summer of 2019 on the Chilean coast. An additional aerial census was conducted in the same area during the austral spring of 2019 as well as a maritime census during the austral summer of 2020. The data showed the presence of South American fur seals in central Chile within their well-known distribution gap. The total abundance was registered in three colonies where fur seals were sighted: one non-breeding colony, Punta Topocalma (summer 2019: mean = 46 ± 3; spring 2019: mean = 9 ± 1); and two breeding colonies, Punta Curaumilla (summer 2019: mean = 595 ± 7; spring 2019: mean = 45 ± 4; summer 2020: mean = 744 ± 5) and Isla Santa María (summer 2019: mean = 246 ± 6). Specifically, we suggest that it is crucial to elucidate the origin of the described settled colonies, and to determine whether there has been an augment in the distribution range from either the northern population, the southern population, or both simultaneously.
Harmful Algal Blooms (HABs) have been classified depending on the causative organism and its impacts: non-toxic HAB (microalgae capable of affecting tourism and causing oxygen deficiency, which generates mortality of marine organisms), toxic HAB (microalgae capable of transferring toxins to the food chain), and ichthyotoxic HAB (microalgae capable of generating mechanical damage in fish). HABs represent a worldwide problem and have apparently increased in frequency, intensity, and geographic distribution at different latitudes. This review details the occurrence of HAB events in the Southeast Pacific, Chile, over a 65-year period, analysing two of the three types of HAB described: toxic and ichthyotoxic HABs. For this, we conducted a review from many different scientific sources and from the written press and social media, that have mentioned HAB events in the country. In Chile, the microalgae involved in HAB events are dinoflagellate (52%), diatoms (33%) and silicoflagellate (10%), with a total of 41 species and/or genera described in the literature. A total of 501 HAB events were recorded in Chile between 1956 and 2021, where 240 (47.9%), 238 (47.5%), 14 (2.7%), 8 (1.5%) and 1 (0.2%) event were caused by diatoms, dinoflagellate, silicoflagellate, raphidophycean and haptophyte, respectively. An apparent increase in the frequency of HAB events is observed since the first record in 1956, with a maximum of 46 events during the years 2017 and 2019. The highest incidence in fish is caused by the group of silicoflagellate, raphidophycean and haptophyte (23 events), where 10 events caused mortalities in salmon with an incidence rate of 43.4%. Unlike what is observed with diatoms and dinoflagellate, the events associated with these groups are less frequent, but hold a much higher salmon mortality rate. During the last 65 years, HAB’s geographic extent shows an apparent trend to increase south-to-north. However, the identification of events is closely linked to the areas where much of the country’s aquaculture is located and, therefore, it could be biased. In turn, it is observed that the apparent increase in HAB events could be associated with a greater monitoring effort after major events (e.g., after the 2016 HAB event). On the other hand, it is also recognized a lack of knowledge about harmful algae throughout the Chilean Humboldt Current system, particularly in the northern regions, such as Atacama and Coquimbo. Therefore, the total number of blooms that have occurred in fjords and channels, particularly those that have caused minor economic impacts for artisanal fishermen and the salmon and mussel farming sector, might be underestimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.