Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.