We review the status of the freshwater fish fauna of Patagonia, an assemblage with 26 native species, comprising fishes of Gondwanan origin, marine dispersants, and oceanic elements of local origin. Several processes, old and new, have shaped the landscape of Patagonia and its fauna: a Gondwanan heritage, the Andes uplifting, Pleistocene ice, volcanic activity, introduction of exotic fishes, mostly Salmonids, and climate change. While there is a significant tradition of taxonomic work on native fish species, research on life history, trophic relationships, and community structure has started to emerge only in the last 15 years. Most studies were conducted in oligotrophic lakes of the Andes; while fauna of streams remains poorly observed. While documentation of impacts by salmonids is scarce, there is some compelling evidence indicating that freshwater communities have been significantly shaped by exotic fish. Impacts by exotic species appear to be dependent on temperature on the east side of the Andes, and land use and watershed perturbation on the west side. In general, freshwater habitat conditions and how they affect fishes are poorly studied. In lakes, habitat complexity and its specialized use by native fishes may have ameliorated the impact by introduced salmonids. Although impacts on rivers abound, led by dam construction, the relationship between stream habitat integrity and native species health is still poorly understood. The future of freshwater resources will largely depend on how able we are to inform managers, the general public and colleagues about their value and the costs of not taking action. But current research capacity is insufficient to deal with most demands because of limitations in people, resources and baseline information. To support our claims, we need to promote regional assessments of freshwater resources and of major threats to their integrity, the building blocks of a regional agenda for their sustainable use.
The present paper analyses predation patterns, of Percichthys trucha and salmonid fish upon Galaxias maculatus in five lakes of northern Patagonia with differing community and environmental characteristics. Tank experiments were performed to evaluate relative efficiency of native and exotic predators of G. maculatus under treatments with and without cover (aquatic vegetation). Important differences were found between predators with regards to distribution and consumption of G. maculatus. Salmonids are more efficient than P. trucha in consuming G. maculatus in deep environments with scarcely vegetation; in contrast to native species they frequently use the pelagic environment. Although pelagic habitat might have served in the past as a refuge from native predators in the past, G maculatus now experiences intense predation in the pelagic zone by exotic salmonids. It is suggested that the widespread distribution of G. maculatus in Patagonian lakes may have facilitated the success of salmonids throughout Patagonia.
Exotic rainbow trout Oncorhynchus mykiss support an economically valuable recreational fishery in Patagonia but also create concern for impacts on native organisms. These concerns are intensified by the possibility of hatchery release programs in this region. We estimated losses of different prey from predation by rainbow trout in Lake Moreno, Río Negro Province, Argentina, using a bioenergetics model combined with input data from directed sampling on growth, seasonal diet, distribution, and thermal experience. The fish community was sampled seasonally using gill nets, hydroacoustics, and ichthyoplankton [Article] nets. Pelagic galaxiid larvae and benthic juvenile and adult small puyen Galaxias maculatus were the most important components of the diet. Bioenergetics simulations showed that over a 6-year life span in the lake (ages 1-7), rainbow trout attained a body mass of 2.3 kg and consumed 74.7 kg of food, of which 20% consisted of galaxiid larvae and 16% consisted of adult small puyen. Based on an estimated abundance of 29,000 rainbow trout of ages 1-7, this predator exerted significant but sustainable mortality on the native prey populations, consuming 44 metric tons or an estimated 23% of the annual larval galaxiid production and 35 metric tons of adult small puyen, which represented an unknown fraction of the postlarval population. Galaxiids supported the estimated predation demand under current conditions. However, simulations of stocking strategies normally proposed for this region showed that consumption demands on prey would increase to unsustainable levels, reducing native fish populations and likely reducing growth of rainbow trout. It is also probable that the fish community composition would shift further in response to the increased demand for prey by stocked predators. This implies that in some cases, stocking could jeopardize sport fisheries; stocking strategies should be evaluated on a case-by-case basis to be consistent with specific objectives for native fish conservation and sustainable food web interactions. 1406 VIGLIANO ET AL. 1408 VIGLIANO ET AL. 1416 VIGLIANO ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.