Fish school swimming speeds is essential for ecological and management studies. The multibeam sonar in horizontal beaming provided dynamic echo traces of mobile fish schools. We used two school swimming speed indicators: the average of a series of instantaneous speed values, and the exploratory speed. These swimming speeds were estimated for each fish school observed on the basis of their Euclidian position within the sonar beams. The average ISS values per school ranged from 0.15 ms −1 to 4.46 ms −1 , while the ESS values per school were lower, ranging from 0.04 ms −1 to 3.77 ms −1 . Multibeam sonar technology makes it possible to measure fish school swimming speeds in their natural habitat at small spatio-temporal scales. This methodology can therefore be used to analyse in situ their movements, and has a wide range of applications in behavioural studies and management purposes.
High-resolution multibeam sonar allows estimating movements of pelagic fish schools at short range. Taking advantage of this methodology, we calculated a Straightness Index (SI) to quantify the proportion of schools migrating actively from those residents in lagoon channels. This information enhances our knowledge of both fish school displacements and migration processes, which are essential to improve our understanding of ecosystem functioning. Most fish schools (65%) exhibited a SI value demonstrating oriented swimming behavior through the channels displayed by schools reaching the sea during fall migration. This trend appears as an intrinsic property of school movements, allowing monitoring of the school migration process in a channel to provide information for manager vs. fishing regulation measures or lagoon planning. The result strengthens the ‘multi-transit’ hypothesis, as 35% of schools show sinuous trajectories representative of schools staying in the channel or displaying high exploratory behaviors. Lastly, the fish school Exploration Swimming Speed (ESS) was tested as a fishery-independent sampling method to evaluate the proportion of different fish species monitored using hydroacoustics. This approach demonstrates the interest in using swimming behavioral characteristics of fish schools for ecological and management purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.