Deep learning (DL) is a branch of machine learning (ML) capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across a range of domains and applications. Single-cell (SC) omics are often high-dimensional, sparse, and complex, making DL techniques ideal for analyzing and processing such data. We examine DL applications in a variety of single-cell omics (genomics, transcriptomics, proteomics, metabolomics and multi-omics integration) and address whether DL techniques will prove to be advantageous or if the SC omics domain poses unique challenges. Through a systematic literature review, we have found that DL has not yet revolutionized or addressed the most pressing challenges of the SC omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) but lacking the needed biological interpretability in many cases. Although such developments have generally been gradual, recent advances reveal that DL methods can offer valuable resources in fast-tracking and advancing research in SC.Abstract Figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.