Effects of biodiversity on ecosystem functioning: a consensus of current knowledge AbstractHumans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1)Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2)Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3)The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4)Some ecosystem properties are initially insensitive to species loss because (a...
The ecological consequences of biodiversity loss have aroused considerable interest and controversy during the past decade. Major advances have been made in describing the relationship between species diversity and ecosystem processes, in identifying functionally important species, and in revealing underlying mechanisms. There is, however, uncertainty as to how results obtained in recent experiments scale up to landscape and regional levels and generalize across ecosystem types and processes. Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments. A major future challenge is to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.
Recent experiments, mainly in terrestrial environments, have provided evidence of the functional importance of biodiversity to ecosystem processes and properties. Compared to terrestrial systems, aquatic ecosystems are characterised by greater propagule and material exchange, often steeper physical and chemical gradients, more rapid biological processes and, in marine systems, higher metazoan phylogenetic diversity. These characteristics limit the potential to transfer conclusions derived from terrestrial experiments to aquatic ecosystems whilst at the same time provide opportunities for testing the general validity of hypotheses about effects of biodiversity on ecosystem functioning. Here, we focus on a number of unique features of aquatic experimental systems, propose an expansion to the scope of diversity facets to be considered when assessing the functional consequences of changes in biodiversity and outline a hierarchical classification scheme of ecosystem functions and their corresponding response variables. We then briefly highlight some recent controversial and newly emerging issues relating to biodiversity‐ecosystem functioning relationships. Based on lessons learnt from previous experimental and theoretical work, we finally present four novel experimental designs to address largely unresolved questions about biodiversity‐ecosystem functioning relationships. These include (1) investigating the effects of non‐random species loss through the manipulation of the order and magnitude of such loss using dilution experiments; (2) combining factorial manipulation of diversity in interconnected habitat patches to test the additivity of ecosystem functioning between habitats; (3) disentangling the impact of local processes from the effect of ecosystem openness via factorial manipulation of the rate of recruitment and biodiversity within patches and within an available propagule pool; and (4) addressing how non‐random species extinction following sequential exposure to different stressors may affect ecosystem functioning. Implementing these kinds of experimental designs in a variety of systems will, we believe, shift the focus of investigations from a species richness‐centred approach to a broader consideration of the multifarious aspects of biodiversity that may well be critical to understanding effects of biodiversity changes on overall ecosystem functioning and to identifying some of the potential underlying mechanisms involved.
Summary 1.The relationship between temporal variability, spectral redness and population persistence for a large number of long-term time series was investigated. Although both intuition and theory suggest that more variability in population abundance would mean greater probability of extinction, previous empirical support for this view has not been conclusive. Possible reasons are the shortage of long-term data and the difficulties of adequately characterizing temporal variability, two issues that are explicitly addressed in this paper. 2. We examined the relationship between population variability and quasi-extinction time (measured as the time required to observe a 90% decline of population abundance) for a large set of data comprising 554 populations for 123 species that were censused for more than 30 years. Two aspects of temporal variability were considered in relation with the quasi-extinction time: a baseline value (coefficient of variation over a fixed, 30-year, time scale), and a measure of the rate of increase of the population variability over time (spectral exponent). 3. The results show that the quasi-extinction time was shorter for populations having higher temporal variability and redder dynamics. The relation between persistence time and population variability was compared for different taxa, trophic levels, habitat type (aquatic and terrestrial) and body sizes and compared with theoretical expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.