Phasor Fields is a wave-based formulation that allows computing time-efficient NLOS reconstructions using Rayleigh-Sommerfeld diffraction kernels. Unfortunately, these kernels are heavy in memory, hampering the integration in memory-constrained devices. We propose alternative kernels based on zone plates that require 16 times less memory to store, offering an attractive trade-off.
The capture and analysis of light in flight, or light in transient state, has enabled applications such as range imaging, reflectance estimation and especially non-line-of-sight (NLOS) imaging. For this last case, hidden geometry can be reconstructed using time-resolved measurements of indirect diffuse light emitted by a laser. Transient rendering is a key tool for developing such new applications, significantly more challenging than its steady-state counterpart. In this work, we introduce a set of simple yet effective subpath sampling techniques targeting transient light transport simulation in occluded scenes. We analyze the usual capture setups of NLOS scenes, where both the camera and light sources are focused on particular points in the scene. Also, the hidden geometry can be difficult to sample using conventional techniques. We leverage that configuration to reduce the integration path space. We implement our techniques in a modified version of Mitsuba 2 adapted for transient light transport, allowing us to support parallelization, polarization, and differentiable rendering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.