Abstract-Modern communications systems use multipleinput multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the number of antennas and the order of the constellation grow, the design of efficient and low-complexity MIMO receivers possesses big technical challenges. For example, symbol detection can no longer rely on maximum likelihood detection or sphere-decoding methods, as their complexity increases exponentially with the number of transmitters/receivers. In this paper, we propose a low-complexity high-accuracy MIMO symbol detector based on the Expectation Propagation (EP) algorithm. EP allows approximating iteratively at polynomial-time the posterior distribution of the transmitted symbols. We also show that our EP MIMO detector outperforms classic and state-of-the-art solutions reducing the symbol error rate at a reduced computational complexity.
Abstract-Spatially-coupled LDPC codes are known to have excellent asymptotic properties. Much less is known regarding their finite-length performance. We propose a scaling law to predict the error probability of finite-length spatially-coupled code ensembles when transmission takes place over the binary erasure channel. We discuss how the parameters of the scaling law are connected to fundamental quantities appearing in the asymptotic analysis of these ensembles and we verify that the predictions of the scaling law fit well to the data derived from simulations over a wide range of parameters. The ultimate goal of this line of research is to develop analytic tools for the design of spatially-coupled LDPC codes under practical constraints.
We propose a novel filter-type equalizer to improve the solution of the linear minimum-mean squared-error (LMMSE) turbo equalizer, with computational complexity constrained to be quadratic in the filter length. When high-order modulations and/or large memory channels are used the optimal BCJR equalizer is unavailable, due to its computational complexity. In this scenario, the filter-type LMMSE turbo equalization exhibits a good performance compared to other approximations. In this paper, we show that this solution can be significantly improved by using expectation propagation (EP) in the estimation of the a posteriori probabilities. First, it yields a more accurate estimation of the extrinsic distribution to be sent to the channel decoder. Second, compared to other solutions based on EP the computational complexity of the proposed solution is constrained to be quadratic in the length of the finite impulse response (FIR). In addition, we review previous EP-based turbo equalization implementations. Instead of considering default uniform priors we exploit the outputs of the decoder. Some simulation results are included to show that this new EP-based filter remarkably outperforms the turbo approach of previous versions of the EP algorithm and also improves the LMMSE solution, with and without turbo equalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.