The adsorption and photooxidation of salicylic acid on dispersed TiO2 (Degussa P-25) particles was studied as a function of substrate concentration and pH. Salicylic acid chemisorbs at the particle interface, forming inner-sphere titanium(IV) salicylate surface complexes. The visible differential diffuse reflectance spectra of the surface complexes present a band, with maximum absorption at 420 nm, which is assigned to the internal ligand to metal charge-transfer transition. The surface excess of salicylic acid increases with decreasing pH and levels off around pK a1. At constant pH, the surface excess increases with the concentration of salicylic acid, the isotherm reflecting surface site heterogeneity. Photooxidation rates in air-saturated solutions, on the other hand, are independent of both pH and salicylic acid concentration, in the entire studied range. Chemisorption results are accounted for by a multisite surface complexation model in which two different surface titanium sites and three complexation modes are considered. The mismatch between salicylic acid surface excess values and photooxidation rates is interpreted in terms of the different reactivities of the titanium(IV) salicylate surface complexes and is attributed to the fastest hole capture by bidentate salicylate binding a single surface titanium ion. The advanced rationale illustrates the importance of the basic principles of coordination chemistry in the interpretation of apparent kinetic orders in photolyte concentration.
TiO 2 films prepared by sol-gel route are active photocatalysts for the oxidation of organics in photoelectrochemical cells. The as-grown films for photocatalysis applications and those exposed to Ar + or H 2 + +Ar + ion bombardment are characterized by different spectroscopic methods, such as X-ray diffraction (XRD), atomic force microscopy (AFM), UV-vis transmittance, photothermal deflection spectroscopy (PDS) and X-ray photoelectron spectroscopy (XPS), as well as by conductance. This material has defects associated with oxygen vacancies produced during the sample preparation which support nondissociative adsorption of O 2 when films are exposed to air. Charge transfer from reduced Ti species to adsorbed dioxygen leads to Ti-O 2surface complexes that are partially removed by heating at 200 °C, and fully removed after 30 min ion bombardment. By comparison with the relatively well-understood structural defects of bombarded TiO 2 we arise to a quite complete structural model of the as grown material which corresponds to an amorphous semiconductor possessing relative low disorder and density of states as compared with a pure amorphous material. These TiO 2 films are modeled as low size crystalline domain embedded in an amorphous matrix whose electronic structure exhibit exponential band tails and a narrow band close to the conduction band. The latter is fully or partially occupied depending on the presence of adsorbed electron scavengers such as dioxygen.
The photo-electro-oxidation on titanium dioxide film electrodes of methanol, 2-propanol, and tert-butyl alcohol has been studied by measuring the transient photocurrents observed during the early stages of illumination. Transients and steady-state photocurrents, measured at different applied potentials and methanol concentrations, were compared with model predictions. The numerical solution of the differential equations corresponding to methanol photo-electro-oxidation, as well as the advanced experimental evidence, supports the hypothesis that surface hole trapping as −OH• mediates the charge transfer to methanol. Formation of −OH• accounts for the high initial photocurrents, its rapid decay being due to recombination. The rate of oxidation of methanol is then determined by the rate of reaction between −OH• and CH3OH located in the interfacial region. The oxidation of •CH2OH to CH2O, through the injection of an electron into the conduction band (current doubling), gives rise to an increase in photocurrent; steady state values are later attained. As a consequence, a minimum transient is observed. The minimum is marginally observable in tert-butyl alcohol solutions, in line with the properties of the respective radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.