Over the last decades, participatory approaches involving on-farm experimentation have become more prevalent in agricultural research. Nevertheless, these approaches remain difficult to scale because they usually require close attention from well-trained professionals. Novel large-N participatory trials, building on recent advances in citizen science and crowdsourcing methodologies, involve large numbers of participants and little researcher supervision. Reduced supervision may affect data quality, but the "Wisdom of Crowds" principle implies that many independent observations from a diverse group of people often lead to highly accurate results when taken together. In this study, we test whether farmergenerated data in agricultural citizen science are good enough to generate valid statements about the research topic. We experimentally assess the accuracy of farmer observations in trials of crowdsourced crop variety selection that use triadic comparisons of technologies (tricot). At five sites in Honduras, 35 farmers (women and men) participated in tricot experiments. They ranked three varieties of common bean (Phaseolus vulgaris L.) for Plant vigor, Plant architecture, Pest resistance, and Disease resistance. Furthermore, with a simulation approach using the empirical data, we did an orderof-magnitude estimation of the sample size of participants needed to produce relevant results. Reliability of farmers' experimental observations was generally low (Kendall's W 0.174 to 0.676). But aggregated observations contained information and had sufficient validity (Kendall's tau coefficient 0.33 to 0.76) to identify the correct ranking orders of varieties by fitting Mallows-Bradley-Terry models to the data. Our sample size simulation shows that low reliability can be compensated by engaging higher numbers of observers to generate statistically meaningful results, demonstrating the usefulness of the Wisdom of Crowds principle in agricultural research. In this first study on data quality from a farmer citizen science methodology, we show that realistic numbers of less than 200 participants can produce meaningful results for agricultural research by tricot-style trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.