eIn Enterococcus faecalis, the mae locus is constituted by two putative divergent operons, maePE and maeKR. The first operon encodes a putative H ؉ /malate symporter (MaeP) and a malic enzyme (MaeE) previously shown to be essential for malate utilization in this bacterium. The maeKR operon encodes two putative proteins with significant similarity to two-component systems involved in sensing malate and activating its assimilation in bacteria. Our transcriptional and genetic assays showed that maePE and maeKR are induced in response to malate by the response regulator MaeR. In addition, we observed that both operons were partially repressed in the presence of glucose. Accordingly, the cometabolism of this sugar and malate was detected. The binding of the complex formed by CcpA and its corepressor P-Ser-HPr to a cre site located in the mae region was demonstrated in vitro and explains the carbon catabolite repression (CCR) observed for the maePE operon. However, our results also provide evidence for a CcpA-independent CCR mechanism regulating the expression of both operons. Finally, a biomass increment of 40 or 75% was observed compared to the biomass of cells grown only on glucose or malate, respectively. Cells cometabolizing both carbon sources exhibit a higher rate of glucose consumption and a lower rate of malate utilization. The growth improvement achieved by E. faecalis during glucose-malate cometabolism might explain why this microorganism employs different regulatory systems to tightly control the assimilation of both carbon sources.
Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.