Waveguide Raman spectroscopy uses the evanescent field outside a waveguide to probe the analyte on the surface of the chip, permitting to selectively study thin films or nanostructures on top of the waveguide while benefiting from the long iteration path of the excitation with the analyte. Both the polarization of the excitation mode as well as the refractive index contrast of the waveguide platform play an important role in the Raman excitation process as well as the coupling efficiency of the generated Raman signal back into the waveguide. In this article, we characterize three waveguide platforms of different refractive index contrasts for waveguide Raman, namely Al 2 O 3 , Si 3 N 4 and TiO 2 on SiO 2. Toluene was used as a test analyte. Both background and analyte were measured for quasi-transverse electric (quasi-TE) and quasitransverse magnetic (quasi-TM) modes. TM modes generate less background than TE modes due to less confinement of the mode in the waveguide core materials. A combination of Si 3 N 4 and quasi-TM polarization led to the highest SNR in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.