When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water1. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal’s frame of reference2. In spite of this, many aquatic animals consistently orient and swim against oncoming flows (a behavior known as rheotaxis) even in the absence of visual cues3,4. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioral data that support a novel algorithm based on such local velocity gradients that fish use to efficiently avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, measure its temporal change following swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioral algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviors in moving fluids.
Handedness of the vertebrate body plan critically depends on transient embryonic structures/organs that generate cilia-dependent leftward fluid flow within constrained extracellular environments. Although the function of ciliated organs in laterality determination has been extensively studied, how they are formed during embryogenesis is still poorly understood. Here we show that Kupffer's vesicle (KV), the zebrafish organ of laterality, arises from a surface epithelium previously thought to adopt exclusively extra-embryonic fates. Live multi-photon confocal imaging reveals that surface epithelial cells undergo Nodal/TGFβ signalling-dependent ingression at the dorsal germ ring margin prior to gastrulation, to give rise to dorsal forerunner cells (DFCs), the precursors of KV. DFCs then migrate attached to the overlying surface epithelium and rearrange into rosette-like epithelial structures at the end of gastrulation. During early somitogenesis, these epithelial rosettes coalesce into a single rosette that differentiates into the KV with a ciliated lumen at its apical centre. Our results provide novel insights into the morphogenetic transformations that shape the laterality organ in zebrafish and suggest a conserved progenitor role of the surface epithelium during laterality organ formation in vertebrates.
SUMMARYOrgan formation requires the precise assembly of progenitor cells into a functional multicellular structure. Mechanical forces probably participate in this process but how they influence organ morphogenesis is still unclear. Here, we show that Wnt11-and Prickle1a-mediated planar cell polarity (PCP) signalling coordinates the formation of the zebrafish ciliated laterality organ (Kupffer's vesicle) by regulating adhesion properties between organ progenitor cells (the dorsal forerunner cells, DFCs). Combined inhibition of Wnt11 and Prickle1a reduces DFC cell-cell adhesion and impairs their compaction and arrangement during vesicle lumen formation. This leads to the formation of a mis-shapen vesicle with small fragmented lumina and shortened cilia, resulting in severely impaired organ function and, as a consequence, randomised laterality of both molecular and visceral asymmetries. Our results reveal a novel role for PCP-dependent cell adhesion in coordinating the supracellular organisation of progenitor cells during vertebrate laterality organ formation.
Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.
RE-1 silencer of transcription/neural restrictive silencer factor (REST/NRSF), a transcriptional repressor, binds to the RE-1 element present in many vertebrate genes. In vitro studies indicate that REST/NRSF plays important roles in several stages of neural development. However, a full understanding of its physiological function requires in vivo approaches. We find that impairment of REST/NRSF function in Xenopus embryos leads to the perturbation of neural tube, cranial ganglia, and eye development. The origin of these defects is the abnormal patterning of the ectoderm during gastrulation. Interference of REST/NRSF function during the late blastula stage leads to an expansion of the neural plate, concomitant with a decrease of the expression of epidermal keratin and neural crest markers. Furthermore, neurogenesis proceeds abnormally, with loss of the expression of proneural, neurogenic, and neuronal genes. The interference of REST/ NRSF mimics several features associated with a decreased bone morphogenetic protein (BMP) function and counteracts some effects of BMP4 misexpression. Our results indicate that REST/NRSF function is required in vivo for the acquisition of specific ectodermal cell fates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.