Robot cooperation is key in Search and Rescue (SaR) tasks. Frequently, these tasks take place in complex scenarios affected by different types of disasters, so an aerial viewpoint is useful for autonomous navigation or human tele-operation. In such cases, an Unmanned Aerial Vehicle (UAV) in cooperation with an Unmanned Ground Vehicle (UGV) can provide valuable insight into the area. To carry out its work successfully, such as multi-robot system requires the autonomous takeoff, tracking, and landing of the UAV on the moving UGV. Furthermore, it needs to be robust and capable of life-long operation. In this paper, we present an autonomous system that enables a UAV to take off autonomously from a moving landing platform, locate it using visual cues, follow it, and robustly land on it. The system relies on a finite state machine, which together with a novel re-localization module allows the system to operate robustly for extended periods of time and to recover from potential failed landing maneuvers. Two approaches for tracking and landing are developed, implemented, and tested. The first variant is based on a novel height-adaptive PID controller that uses the current position of the landing platform as the target. The second one combines this height-adaptive PID controller with a Kalman filter in order to predict the future positions of the platform and provide them as input to the PID controller. This facilitates tracking and, mainly, landing. Both the system as a whole and the re-localization module in particular have been tested extensively in a simulated environment (Gazebo). We also present a qualitative evaluation of the system on the real robotic platforms, demonstrating that our system can also be deployed on real robotic platforms. For the benefit of the community, we make our software open source.
Pose MLP t1 t2 tN p2 p1Figure 1: Given an input monocular depth sequence, our Neural Parametric Models (NPMs), composed of learned latent shape and pose spaces, enable optimizing over the spaces to fit to the observations at test time, similar to traditional parametric model fitting (e.g., SMPL [27]). NPMs can be constructed from a dataset of deforming shapes without strong requirements on surface correspondence annotations or category-specific knowledge. Our implicit shape and pose spaces enable expression of finer-scale details while providing a well-regularized space to fit to new observations of deforming shapes.
Typically, lane departure warning systems rely on lane lines being present on the road.However, in many scenarios, e.g., secondary roads or some streets in cities, lane lines are eithernot present or not sufficiently well signaled. In this work, we present a vision-based method tolocate a vehicle within the road when no lane lines are present using only RGB images as input.To this end, we propose to fuse together the outputs of a semantic segmentation and a monoculardepth estimation architecture to reconstruct locally a semantic 3D point cloud of the viewed scene.We only retain points belonging to the road and, additionally, to any kind of fences or walls thatmight be present right at the sides of the road. We then compute the width of the road at a certainpoint on the planned trajectory and, additionally, what we denote as the fence-to-fence distance.Our system is suited to any kind of motoring scenario and is especially useful when lane lines arenot present on the road or do not signal the path correctly. The additional fence-to-fence distancecomputation is complementary to the road’s width estimation. We quantitatively test our methodon a set of images featuring streets of the city of Munich that contain a road-fence structure, so asto compare our two proposed variants, namely the road’s width and the fence-to-fence distancecomputation. In addition, we also validate our system qualitatively on the Stuttgart sequence of thepublicly available Cityscapes dataset, where no fences or walls are present at the sides of the road,thus demonstrating that our system can be deployed in a standard city-like environment. For thebenefit of the community, we make our software open source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.