A large number of microorganisms are responsible for the oxidation of Mn(2+)((aq)) to insoluble Mn(3+/4+) oxides (MnO(x)()) in natural aquatic systems. This paper reports the structure of the biogenic MnO(x)(), including a quantitative analysis of cation vacancies, formed by the freshwater bacterium Leptothrix discophora SP6 (SP6-MnO(x)()). The structure and the morphology of SP6-MnO(x)() were characterized by transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), including full multiple-scattering analysis, and powder X-ray diffraction (XRD). The biogenic precipitate consists of nanoparticles that are approximately 10 nm by 100 nm in dimension with a fibrillar morphology that resembles twisted sheets. The results dem-onstrate that this biogenic MnO(x)() is composed of sheets of edge-sharing of Mn(4+)O(6) octahedra that form layers. The detailed analysis of the EXAFS spectra indicate that 12 +/- 4% of the Mn(4+) layer cation sites in SP6-MnO(x)() are vacant, whereas the analysis of the XANES suggests that the average oxidation state of Mn is 3.8 +/- 0.3. Therefore, the average chemical formula of SP6-MnO(x)() is M(n)()(+)(y)()Mn(3+)(0.12)[ square(0.12)Mn(4+)(0.88)]O(2).zH(2)O, where M(n)()(+)(y)() represents hydrated interlayer cations, square(0.12) represents Mn(4+) cation vacancies within the layer, and Mn(3+)(0.12) represents hydrated cations that occupy sites above/below these cation vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.