Abstract-The number of small embedded devices connected to the Internet is increasing. This growth is mostly due to the large number of Internet of Things (IoT) deployments, with applications such as: industrial monitoring, home automation, and others. One common aspect with the majority of application areas is the lack of mobility. Most IoT devices are stationary and often use IEEE 802.15.4/6LoWPAN solutions. When a high level of mobility is required, the use of IEEE 802.15.4 is not possible without adding additional hardware for the user to carry.In this article, a holistic network architecture consisting of heterogeneous devices is presented. The architecture is composed of Embedded Internet Systems (EIS) and uses standard communication protocols. One important feature is the use of the Service-oriented architecture (SOA) paradigm. The use of SOA, by utilization of the CoAP protocol and standard services, enables the proposed architecture to exchange sensorand actuator data with an Internet-based cloud as well as a user's local cloud consisting of sensor IoT devices, smart phones and laptops. Another component of the architecture is a webbased human-machine interface for configuration, monitoring and visualization of sensor and actuator data using emerging web technologies for structured data processing.Results from experiments and real-world tests show that the proposed architecture can support sample rates of up to several kHz while enabling sensor data to be transmitted to SOA services in real time. This proves that the use of SOA, and RESTful web services in particular, is feasible on resourceconstrained platforms while supporting true mobility.
Abstract-Internet of Things (IoT) and Cyber-physical Systems (CPS) are two very hot research topics today, and more and more products are starting to appear on the market. Research has shown that the use of Service Oriented Architecture (SOA) can enable distributed application and devices to device communication, even on very resource constrained devices, and thus play an important role for IoT and CPS.In order to realize the vision of Internet of Things, communication between devices must be secured. Security mechanisms for resource constrained devices has attracted much interest from the academic community, where research groups have shown solutions like IPsec, VPN-tunnels, (D)TLS, etc. are feasible to use on this type of networks. However, even though the use of wellknown security mechanisms are vital for SOA-based IoT/CPS networks and systems to be protected, they do not provide any fine-grain access control.In this paper, a CoAP-based framework for service-level access control on low-power devices is presented. The framework allows fine grain access control on a per service and method basis. For example, by using this approach a device can allow read/write access to its services to one group of users while only allowing read access to another group. Users without the right credentials are not even allowed to discover available services. To demonstrate the validity of the proposed approach, several implementations are presented together with test results.The aim is to provide a holistic framework for secure SOAbased low power networks comprise by resource constrain devices.
No abstract
Developing and deploying Web applications on networked embedded devices is often seen as a way to reduce the development cost and time to market for new target platforms. However, the size of the messages and the processing requirements of today's Web protocols, such as HTTP and XML, are challenging for the most resource-constrained class of devices that could also benefit from Web connectivity.New Web protocols using binary representations have been proposed for addressing this issue. Constrained Application Protocol (CoAP) reduces the bandwidth and processing requirements compared to HTTP while preserving the core concepts of the Web architecture. Similarly, Efficient XML Interchange (EXI) format has been standardized for reducing the size and processing time for XML structured information. Nevertheless, the adoption of these technologies is lagging behind due to lack of support from Web browsers and current Web development toolkits.Motivated by these problems, this article presents the design and implementation techniques for the EXIP framework for embedded Web development. The framework consists of a highly efficient EXI processor, a tool for EXI data binding based on templates, and a CoAP/EXI/XHTML Web page engine. A prototype implementation of the EXI processor is herein presented and evaluated. It can be applied to Web browsers or thin server platforms using XHTML and Web services for supporting human-machine interactions in the Internet of Things.This article contains four major results: (1) theoretical and practical evaluation of the use of binary protocols for embedded Web programming; (2) a novel method for generation of EXI grammars based on XML Schema definitions; (3) an algorithm for grammar concatenation that produces normalized EXI grammars directly, and hence reduces the number of iterations during grammar generation; (4) an algorithm for efficient representation of possible deviations from the XML schema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.