In this paper, a noninvasive portable prototype is presented for biomedical audio signal processing. The proposed prototype is suitable for monitoring the health of patients. The proposed hardware setup consists of a cost-effective microphone, multipurpose microcontroller and computing node that could be a mobile phone or general-purpose computer. Using parallel and high-performance techniques, this setup allows one to register and wirelessly multicast the recorded biomedical signals to computing nodes in real time. The developed prototype was used as a case study to estimate the heart rate (HR) from the captured biomedical audio signal. In this regard, the developed algorithm for estimating HR comprises three stages: preprocessing, separation, and HR estimation. In the first stage, the signal captured by the microphone is adapted for processing. Subsequently, a separation stage was proposed to alleviate the acoustic interference between the lungs and heart. The separation is performed by combining a non-negative matrix factorization algorithm, clustering approach, and soft-filter strategy. Finally, HR estimation was obtained using a novel and efficient method based on the autocorrelation function. The developed prototype could be used not only for the estimation of the HR, but also for the retrieval of other biomedical information related to the recording of cardiac or respiratory audio signals. The proposed method was evaluated using well-known datasets and compared with state-of-the-art algorithms for source-separation. The results showed that it is possible to obtain an accurate separation and reliable real-time estimation in terms of source separation metrics and relative error in the tested scenarios by combining multi-core architectures with parallel and high-performance techniques. Finally, the proposed prototype was validated in a real-world scenario.
In this paper, a parallel computing method is proposed to perform the background denoising and wheezing detection from a multi-channel recording captured during the auscultation process. The proposed system is based on a non-negative matrix factorization (NMF) approach and a detection strategy. Moreover, the initialization of the proposed model is based on singular value decomposition to avoid dependence on the initial values of the NMF parameters. Additionally, novel update rules to simultaneously address the multichannel denoising while preserving an orthogonal constraint to maximize source separation have been designed. The proposed system has been evaluated for the task of wheezing detection showing a significant improvement over state-of-the-art algorithms when noisy sound sources are present. Moreover, parallel and high-performance techniques have been used to speedup the execution of the proposed system, showing that it is possible to achieve fast execution times, which enables its implementation in real-world scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.