A highly sensitive electrochemical methodology for end-point detection
of loop-mediated isothermal nucleic acid amplification reactions was
developed. It is based on the oxidation process of phenol red (PR),
commonly used as a visual indicator. The dependence of its redox process
on pH, which changes during amplification, allows performing quantitative
measurements. Thus, the change in the oxidation potential of PR during
the amplification is used, for the first time, as the analytical signal
that correlates with the number of initial DNA copies. As a proof-of-concept,
the amplification of the pneumolysin gene from Streptococcus
pneumoniae, one of the main pathogens causing community-acquired
pneumonia, is performed. Combination of isothermal amplification with
electrochemical detection, performed on small-size flexible electrodes,
allows easy decentralization. Adaptation to the detection of other
pathogens causing infectious diseases would be very useful in the
prevention of future epidemics.
Quantitative polymerase chain reaction (qPCR) is considered the gold standard for pathogen detection. However, improvement is still required, especially regarding the possibilities of decentralization. Apart from other reasons, infectious diseases demand on‐site analysis to avoid pathogen spreading and increase treatment efficacy. In this paper, the detection of SARS‐CoV‐2 is carried out by reverse transcription loop‐mediated isothermal amplification, which has the advantage of requiring simple equipment, easily adaptable to decentralized analysis. It is proposed, for the first time, the use of palladium nanoclusters (PdNCs) as indicators of the amplification reaction at end point. The pH of the medium decreases during the reaction and, in turn, a variation in the catalytic activity of PdNCs on the oxygen reduction reaction (ORR) can be electrochemically observed. For the detection, flexible and small‐size screen‐printed electrodes can be premodified with PdNCs, which together with the use of a simple and small electrochemical equipment would greatly facilitates their integration in field‐deployable devices. This would allow a faster detection of SARS‐CoV‐2 as well as of other future microbial threats after an easy adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.