Because mangroves store greater amounts of carbon (C) per area than any other terrestrial ecosystem, conservation of mangrove forests on a global scale represents a potentially meaningful strategy for mitigating atmospheric greenhouse‐gas (GHG) emissions. However, analyses of how coastal ecosystems influence the global C cycle also require the mapping of ecosystem area across the Earth's surface to estimate C storage and flux (movement) in order to compare how different ecosystem types may mitigate GHG enrichment in the atmosphere. In this paper, we propose a new framework based on diverse coastal morphology (that is, different coastal environmental settings resulting from how rivers, tides, waves, and climate have shaped coastal landforms) to explain global variations in mangrove C storage, using soil organic carbon (SOC) as a model to more accurately determine mangrove contributions to global C dynamics. We present, to the best of our knowledge, the first global mangrove area estimate occupying distinct coastal environmental settings, comparing the role of terrigenous and carbonate settings as global “blue carbon” hotspots. C storage in deltaic settings has been overestimated, while SOC stocks in carbonate settings have been underestimated by up to 50%. We encourage the scientific community, which has largely focused on blue carbon estimates, to incorporate coastal environmental settings into their evaluations of C stocks, to obtain more robust estimates of global C stocks.
Aim We developed a set of statistical models to improve spatial estimates of mangrove aboveground biomass (AGB) based on the environmental signature hypothesis (ESH). We hypothesized that higher tidal amplitudes, river discharge, temperature, direct rainfall and decreased potential evapotranspiration explain observed high mangrove AGB. Location Neotropics and a small portion of the Nearctic region. Methods A universal forest model based on site‐level forest structure statistics was validated to spatially interpolate estimates of mangrove biomass at different locations. Linear models were then used to predict mangrove AGB across the Neotropics. Results The universal forest site‐level model was effective in estimating mangrove AGB using pre‐existing mangrove forest structure inventories to validate the model. We confirmed our hypothesis that at continental scales higher tidal amplitudes contributed to high forest biomass associated with high temperature and rainfall, and low potential evapotranspiration. Our model explained 20% of the spatial variability in mangrove AGB, with values ranging from 16.6 to 627.0 t ha−1 (mean, 88.7 t ha−1). Our findings show that mangrove AGB has been overestimated by 25–50% in the Neotropics, underscoring a commensurate bias in current published global estimates using site‐level information. Main conclusions Our analysis show how the ESH significantly explains spatial variability in mangrove AGB at hemispheric scales. This finding is critical to improve and explain site‐level estimates of mangrove AGB that are currently used to determine the relative contribution of mangrove wetlands to global carbon budgets. Due to the lack of a conceptual framework explicitly linking environmental drivers and mangrove AGB values during model validation, previous works have significantly overestimated mangrove AGB; our novel approach improved these assessments. In addition, our framework can potentially be applied to other forest‐dominated ecosystems by allowing the retrieval of extensive databases at local levels to generate more robust statistical predictive models to estimate continental‐scale biomass values.
Group formation is a common behaviour among prey species. In egg-laying animals, despite the various factors that promote intra-clutch variation leading to asynchronous hatching and emergence from nests, synchronous hatching and emergence occurs in many taxa. This synchrony may be adaptive by reducing predation risk, but few data are available in any natural system, even for iconic examples of the anti-predator function of group formation. Here, we show for the first time that increased group size (number of hatchlings emerging together from a nest) reduces green turtle (Chelonia mydas) hatchling predation. This effect was only observed earlier in the night when predation pressure was greatest, indicated by the greatest predator abundance and a small proportion of predators preoccupied with consuming captured prey. Further analysis revealed that the effect of time of day was due to the number of hatchlings already killed in an evening; this, along with the apparent lack of other anti-predatory mechanisms for grouping, suggests that synchronous emergence from a nest appears to swamp predators, resulting in an attack abatement effect. Using a system with relatively pristine conditions for turtle hatchlings and their predators provides a more realistic environmental context within which intra-nest synchronous emergence has evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.